EMAN RESEARCH PUBLISHING | <p>Immunomodulatory Effects of <em>Moringa oleifera </em>Seed Extract and Nano Zinc Oxide on Benzene-Induced Toxicity<em> In-Vivo</em></p>
Inflammation Cancer Angiogenesis Biology and Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Immunomodulatory Effects of Moringa oleifera Seed Extract and Nano Zinc Oxide on Benzene-Induced Toxicity In-Vivo

Shirin Jazar Amin 1*, Ayyub J. Abdl-Rhmaan Al-Bayaty 1, Salah M. A. Alkubaisi 2

+ Author Affiliations

Journal of Angiotherapy 8 (4) 1-6 https://doi.org/10.25163/angiotherapy.849541

Submitted: 29 January 2024 Revised: 02 April 2024  Published: 07 April 2024 


Abstract

Background: Benzene, an aromatic hydrocarbon found in crude oil and petrol, shows significant health risks due to its ubiquitous presence in the environment. Exposure to benzene leads to various health issues, including hematological disorders and increased cancer risk. In recent years, interest has grown in identifying natural compounds with antioxidant properties to mitigate benzene toxicity. This study aimed to investigate the effects of Moringa oleifera (MO) seed extract on benzene-induced changes in key hematological parameters in a rat model. Methods: Fresh Moringa seeds were extracted and processed, and adult Wistar rats were divided into six groups, including controls and those exposed to benzene alone or treated with Moringa seed extract, nano zinc oxide, or their combination. Blood samples were collected at different intervals to assess white blood cell counts, immunoglobulin levels, and other hematological markers. Results: Treatment with benzene led to significant decreases in total leukocyte counts and alterations in differential leukocyte percentages, indicating immune system suppression. However, treatment with Moringa seed extract, alone or in combination with nano zinc oxide, mitigated these effects, restoring white blood cell counts and improving immune parameters. Additionally, Moringa extract treatment was associated with enhanced levels of immunoglobulins IgG and IgM. Conclusion: Moringa seed extract shows promise in increasing immunity and white blood cell counts after benzene exposure. Further research is needed to explore its potential as a therapeutic agent against benzene toxicity.

Keywords: Benzene toxicity, Moringa oleifera, Nano zinc oxide, Immunomodulation, Wistar rats

References


Abd-Elhakim, Y. M., El Bohi, K. M., Hassan, S. K., El Sayed, S., & Abd-Elmotal, S. M. (2018). Palliative effects of Moringa olifera ethanolic extract on hemato-immunologic impacts of melamine in rats. Food and Chemical Toxicology, 114, 1–10.

Ajibade, T. O., Olayemi, F. O., & Arowolo, R. O. A. (2012). The Haematological and Biochemical Effects of Methanol Extract of the Seeds of Moringa oleifera in Rats. Journal of Medicinal Plants Research, 6, 615-621.

Aleksiichuk, V., Omelchuk, S., Sokurenko, L., Kaminsky, R., Kovalchuk, O., & Chaikovsky, Y. (2018). The influence of lead nanoparticles on the morpho-functional changes of rat liver during the postexposure period. Microscopy Research and Technique, 81(7), 781-788.

Anonymous. (2009). The Wealth of India – A Dictionary of Indian Raw Materials and Industrial Products, Vol. 6. New Delhi: Council of Scientific and Industrial Research - Niscair, 426.

Asomugha, A. L., Ezejindu, D. N., Asomugha, R. N., Anyabolu, A. E., & Ojukwu, P. C. (2015). Evaluation of toxicity effect of graded doses of Moringa oleifera leaf extract on blood indices using 20 adult Wistar rats. International Journal of Biomedical Advance Research, 6(2), 98–102.

Feng, J., Ma, W. Q., Niu, N. H., Wu, X. M., Wang, Y., & Feng, J. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research, 133, 203–211.

Frandson, R. D. (1981). Anatomy and Physiology of Farm Animals. Philadelphia: Lea Febiger Publishers.

Goldstein, B. D., & Shalat, S. L. (2000). The causal relation between benzene exposure and multiple myeloma. Blood, 95(4), 1512–1514.

Gupta, R., & Flora, S. J. S. (2005). Protective value of Aloe vera against some toxic effects of arsenic in rats. Phytotherapy Research, 19(1), 23.

Hayes, R. B., Songnian, Y., Dosemeci, M., & Linet, M. (2001). Benzene and lymphohematopoietic malignancies in humans. American Journal of Industrial Medicine, 40(2), 117–126.

Jahn, S. A. A. (1988). Using Moringa Seeds as Coagulants in Developing Countries. Journal of American Water Works Association, 80, 43-50. https://doi.org/10.1002/j.1551-8833.1988.tb03052.x

Kirkeleit, J., Riise, T., Bråtveit, M., & Moen, B. E. (2008). Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil. Cancer Causes & Control, 19, 13–23.

Kirkeleit, J., Ulvestad, E., Riise, T., et al. (2006). Acute suppression of serum IgM and IgA in tank workers exposed to benzene. Scandinavian Journal of Immunology, 64, 690–698.

Lan, Q., Zhang, L., Li, G., Vermeulen, R., Weinberg, R. S., Dosemeci, M., ... Smith, M. T. (2004). Hematotoxicity in workers exposed to low levels of benzene. Science, 306, 1774-1776.

Lan, Q., Zhang, L., Li, G., Vermeulen, R., Weinberg, R. S., Dosemeci, M., ... Smith, M. T. (2004). Hematotoxicity in workers exposed to low levels of benzene. Science, 306, 1774-1776.

Ojeka, S., Obia, O., & Dapper, D. (2018). Effect of acute administration of aqueous leaf extract of Moringa oleifera on immunoglobulin levels in wistar rats. European Journal of Medicinal Plants, 14, 1–7.

Ojo, O. A., Ajiboye, B. O., Oyinloye, B. E., & Ojo, A. B. (2014). Hematological properties of Irvingia gabonensis in male adult rats. Journal of Pharmaceutical Sciences & Innovation, 3(5), 434–435.

Otitoju, O., Nwamarah, J. U., Otitoju, G. T. O., Okorie, A. U., Stevens, C., & Baiyeri, K. P. (2014). Effect of Moringa oleifera aqueous leaf extract on some haematological indices in Wistar rats. Chemical Process Engineering Research, 18, 26–30.

Qu, Q., Shore, R., Li, G., Jin, X., Chen, L. C., Cohen, B., ... Li, K. (2002). Hematological changes among Chinese workers with a broad range of benzene exposures. American Journal of Industrial Medicine, 42, 275-285.

Rajkumar, R., Ilango, B., Savidha, R., Vinothkumar, K., Ezhilarasan, D., & Sukumar, E. (2021). Effect of Emblica officinalis fruits against metallic-lead induced biochemical and hematological alterations in Wistar rats. Indian Journal of Biochemistry & Biophysics, 58, 451.

Rajkumar, R., Sharief, S. D., Vinothkumar, K., Ilango, B., & Sukumar, E. (2010). Effect of Emblica officinalis fruits in lowering bioaccumulation of lead in rats. Pollution Research, 29, 441.

Reda, F. M., El-Saadony, M. T., El-Rayes, T. K., Attia, A. I., El-Sayed, S. A., Ahmed, S. Y., ... Alagawany, M. (2021). Use of biological nano zinc as a feed additive in quail nutrition: Biosynthesis, antimicrobial activity and its effect on growth, feed utilization, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20(1), 324–335.

Schettgen, T., Ochsmann, E., Alt, A., & Kraus, T. (2009). A biomarker approach to estimate the daily intake of benzene in non-smoking and smoking individuals in Germany. Journal of Exposure Science & Environmental Epidemiology, 20, 427-433.

Schnatter, A. R., Rosamilia, K., & Wojcik, N. C. (2005). Review of the literature on benzene exposure and leukemia subtypes. Chemico-Biological Interactions, 153(4), 9–21.

Smith, M. T., Zhang, L., Jeng, M., Wang, Y., Guo, W., Duramad, P., ... Holland, N. T. (2000). Hydroquinone, a benzene metabolite, increases the level of aneusomy of Chromosomes 7 and 8 in human CD34-positive blood progenitor cells. Carcinogenesis, 21(8), 1485–1490.

Sorahan, T., Kinlen, L. J., & Doll, R. (2005). Cancer risks in a historical UK cohort of benzene exposed workers. Occupational and Environmental Medicine, 62, 231–236.

Tang, H. Q., Xu, M., Rong, Q., Jin, R. W., Liu, Q. J., & Li, Y. L. (2016). The effect of ZnO nanoparticles on liver function in rats. International Journal of Nanomedicine, 4275-4285.

Tsai, S. P., Fox, E. E., Ransdell, J. D., Wendt, J. K., Waddell, L. C., & Donnelly, R. P. (2004). A hematology surveillance study of petrochemical workers exposed to benzene. Regulatory Toxicology and Pharmacology, 40, 67-73.

Uzma, N., Kumar, B. S., & Hazari, M. A. H. (2010). Exposure to benzene induces oxidative stress, alters the immune response and expression of p53 in gasoline filling workers. American Journal of Industrial Medicine, 53, 1264–1270.

Weisel, C. P. (2010). Benzene exposure: An overview of monitoring methods and their findings. Chemico-Biological Interactions, 184, 58-66.

Zhang, L., McHale, C. M., Rothman, N., Li, G., Ji, Z., Vermeulen, R., ... Lan, Q. (2014). Systems biology of human benzene exposure. Chemico-Biological Interactions, 184, 86-93.

Committee on Publication Ethics

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
45
View

Share