References
Acharya, U. K., & Kumar, S. (2020). Particle swarm optimized texture based histogram equalization (PSOTHE) for MRI brain image enhancement. Optik, 224, 165760.
Chen, J., Yu, W., Tian, J., Chen, L., & Zhou, Z. (2018). Image contrast enhancement using an artificial bee colony algorithm. Swarm and Evolutionary Computation, 38, 287-294.
Cooper, L. A., Carter, A. B., Farris, A. B., Wang, F., Kong, J., Gutman, D. A., ... & Saltz, J. H. (2012). Digital pathology: Data-intensive frontier in medical imaging. Proceedings of the IEEE, 100(4), 991-1003.
Draa, A., & Bouaziz, A. (2014). An artificial bee colony algorithm for image contrast enhancement. Swarm and Evolutionary computation, 16, 69-84.
Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm and Evolutionary Computation, 48, 1-24.
Gorai, A., & Ghosh, A. (2011, September). Hue-preserving color image enhancement using particle swarm optimization. In 2011 IEEE Recent Advances in Intelligent Computational Systems (pp. 563-568). IEEE.
Islam, S. M., & Mondal, H. S. (2019, July). Image enhancement based medical image analysis. In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
Kandhway, P., & Bhandari, A. K. (2019). An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement. Multidimensional systems and signal processing, 30, 1859-1894.
Khanna, K., & Madan Arora, S. (2016). Ant colony optimization towards image processing. Indian J Sci Technol, 9(48), 1-9.
Lozano-Vázquez, L. V., Miura, J., Rosales-Silva, A. J., Luviano-Juárez, A., & Mújica-Vargas, D. (2022). Analysis of Different Image Enhancement and Feature Extraction Methods. Mathematics, 10(14), 2407.
Luo, W., Duan, S., & Zheng, J. (2021). Underwater image restoration and enhancement based on a fusion algorithm with color balance, contrast optimization, and histogram stretching. IEEE Access, 9, 31792-31804.
Luque-Chang, A., Cuevas, E., Pérez-Cisneros, M., Fausto, F., Valdivia-Gonzalez, A., & Sarkar, R. (2021). Moth swarm algorithm for image contrast enhancement. Knowledge-Based Systems, 212, 106607.
Ma, J. J., Nakarmi, U., Kin, C. Y. S., Sandino, C. M., Cheng, J. Y., Syed, A. B., ... & Vasanawala, S. S. (2020, April). Diagnostic image quality assessment and classification in medical imaging: Opportunities and challenges. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 337-340). IEEE.
Monika Agarwal, Rashima Mahajan (2017) “Medical Images Contrast Enhancement using Quad Weighted Histogram Equalization with Adaptive Gama Correction and Homomorphic Filtering” Procedia Computer Science, 115:509-517.
Monika Agarwal, Rashima Mahajan (2018) “Medical Image Contrast Enhancement using Range Limited Weighted Histogram Equalization” Procedia Computer Science, 125:149-156.
Muniyappan, S., & Rajendran, P. (2019). Contrast enhancement of medical images through adaptive genetic algorithm (AGA) over genetic algorithm (GA) and particle swarm optimization (PSO). Multimedia Tools and Applications, 78, 6487-6511.
Navaneetha Krishnan, S., Yuvaraj, D., Banerjee, K., Josephson, P. J., Kumar, T., & Ayoobkhan, M. U. A. (2022). Medical image enhancement in health care applications using modified sun flower optimization. Optik, 271, 170051.
Qi, Y., Yang, Z., Sun, W., Lou, M., Lian, J., Zhao, W., ... & Ma, Y. (2021). A comprehensive overview of image enhancement techniques. Archives of Computational Methods in Engineering, 1-25.
Rundo, L., Tangherloni, A., Nobile, M. S., Militello, C., Besozzi, D., Mauri, G., & Cazzaniga, P. (2019). MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Systems with Applications, 119, 387-399.
Rundo, L., Tangherloni, A., Nobile, M. S., Militello, C., Besozzi, D., Mauri, G., & Cazzaniga, P. (2019). MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Systems with Applications, 119, 387-399.
Seyyedabbasi, A., & Kiani, F. (2022). Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 1-25.
Singh, M., Sharma, N., Verma, A., & Sharma, S. (2016). Dynamic stochastic resonance based diffusion-weighted magnetic resonance image enhancement using multi-objective particle swarm optimization. Journal of Medical and Biological Engineering, 36, 891-900.
Sprawls, P. (2014). Optimizing medical image contrast, detail and noise in the digital era. Medical Physics International, 2(1).
Suetens, P. (2017). Fundamentals of medical imaging. Cambridge university press.
Tzalavra, A. G., Andreadis, I., V Dalakleidi, K., Constantinidis, F., I Zacharaki, E., & S Nikita, K. (2022). Dynamic contrast enhanced-magnetic resonance imaging radiomics combined with a hybrid adaptive neuro-fuzzy inference system-particle swarm optimization approach for breast tumour classification. Expert Systems, 39(4), e12895.
Veluchamy, M., & Subramani, B. (2019). Image contrast and color enhancement using adaptive gamma correction and histogram equalization. Optik, 183, 329-337.
Verma, O. P., Chopra, R. R., & Gupta, A. (2016, March). An adaptive bacterial foraging algorithm for color image enhancement. In 2016 Annual Conference on Information Science and Systems (CISS) (pp. 1-6). IEEE.
Wadhwa, A., & Bhardwaj, A. (2021). Contrast enhancement of MRI images using morphological transforms and PSO. Multimedia Tools and Applications, 80, 21595-21613.
Zhou, Y., Shi, C., Lai, B., & Jimenez, G. (2019). CE of medical images using a new version of the world cup optimization algorithm. Quantitative imaging in medicine and surgery, 9(9), 1528.