Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Therapeutic Targeting on Death Pathways in Glioblastoma

Pavithra Suppiah1, Julia Joseph1, Rolla Al-Shalabi1, Nik Nur Syazni Nik Mohamed kamal1, Nozlena Abdul Samad1*

+ Author Affiliations

Journal of Angiotherapy 6 (2) 637-645 https://doi.org/10.25163/angiotherapy.624312

Submitted: 11 June 2022 Revised: 24 June 2022  Published: 02 July 2022 


Abstract

Glioblastoma multiforme (GBM) is a type of aggressive glioma composed of star-shaped glial cells; it is also known as grade IV astrocytoma. Alterations are enhancing therapeutic effectiveness for individuals with glioblastoma to several targeted medicines that target cell death pathways such apoptosis (type I), autophagic cell death (type II), and necrosis (type III). The purpose of this review was to compile information about the various methods of killing cancer cells in glioblastoma and the treatments currently being used. This review aimed to determine the effectiveness of targeted therapy on glioblastoma death pathways, both intrinsic and extrinsic. Furthermore, nanoparticles studies represented a significant advance in glioblastoma via combinatorial therapy. Targeting specific proteins or genes using drug-loaded nanoparticles has promise as a treatment for glioblastoma.

Keywords:  Apoptosis; Astrocytoma; Blood-Brain Barrier; Glioblastoma; Nanoparticles.

References


Avci, N. G., Ebrahimzadeh-Pustchi, S., Akay, Y. M., Esquenazi, Y., Tandon, N., Zhu, J. J., & Akay, M. (2020). NF-κB inhibitor with Temozolomide results in significant apoptosis in Glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70392-5

Banu, Z. (2019). GLIOBLASTOMA MULTIFORME: A REVIEW OF ITS PATHOGENESIS AND TREATMENT. International Research Journal Of Pharmacy, 9(12), 7–12. https://doi.org/10.7897/2230-8407.0912283

Chaudhry R, Usama SM, Babiker HM. Physiology, Coagulation Pathways. [Updated 2020 Sep 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482253/

Cheng, X., Geng, F., Pan, M., Wu, X., Zhong, Y., Wang, C., Tian, Z., Cheng, C., Zhang, R., Puduvalli, V., Horbinski, C., Mo, X., Han, X., Chakravarti, A., & Guo, D. (2020). Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metabolism, 32(2), 229–242.e8. https://doi.org/10.1016/j.cmet.2020.06.002

Cui, P., Wei, F., Hou, J., Su, Y., Wang, J., & Wang, S. (2020). STAT3 inhibition induced temozolomide-resistant Glioblastoma apoptosis via triggering mitochondrial STAT3 translocation and respiratory chain dysfunction. Cellular Signalling, 71, 109598. https://doi.org/10.1016/j.cellsig.2020.109598

Eisele, G., & Weller, M. (2013). Targeting apoptosis pathways in Glioblastoma. Cancer Letters, 332(2), 335–345. https://doi.org/10.1016/j.canlet.2010.12.012

Forte, I., Indovina, P., Iannuzzi, C., Cirillo, D., Di Marzo, D., Barone, D., Capone, F., Pentimalli, F., & Giordano, A. (2019). Targeted therapy based on p53 reactivation reduces both Glioblastoma cell growth and resistance to temozolomide. International Journal of Oncology. Published. https://doi.org/10.3892/ijo.2019.4788

Goldsmith, K. C., & Hogarty, M. D. (2005). Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Letters, 228(1-2), 133-141.doi: 10.1016/j.canlet.2005.01.048

Guicciardi, M. E., & Gores, G. J. (2009). Life and death by death receptors. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 23(6), 1625–1637. https://doi.org/10.1096/fj.08-111005

Hooper, C., & Killick, R. (2021, March 27). Apoptosis: mitochondrial and death receptor pathways | Abcam. Abcam. https://www.abcam.com/content/apoptosis-mitochondrial-and-death-receptor-pathways

Kaushik, N. K., Kaushik, N., Wahab, R., Bhartiya, P., Linh, N. N., Khan, F., Al-Khedhairy, A. A., & Choi, E. H. (2020). Cold Atmospheric Plasma and Gold Quantum Dots Exert Dual Cytotoxicity Mediated by the Cell Receptor-Activated Apoptotic Pathway in Glioblastoma Cells. Cancers, 12(2), 457. https://doi.org/10.3390/cancers12020457

Kusaczuk, M., Kretowski, R., Naumowicz, M., Stypulkowska, A., & Cechowska-Pasko, M. (2018). Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in Glioblastoma cells. International Journal of Nanomedicine, Volume 13, 2279–2294. https://doi.org/10.2147/ijn.s158393

Lei, D., Zhang, F., Yao, D., Xiong, N., Jiang, X., & Zhao, H. (2017). MiR-338-5p suppresses proliferation, migration, invasion, and promote apoptosis of Glioblastoma cells by directly targeting EFEMP1. Biomedicine & Pharmacotherapy, 89, 957–965. https://doi.org/10.1016/j.biopha.2017.01.137

Lopez, J., & Tait, S. W. G. (2015). Mitochondrial apoptosis: killing cancer using the enemy within. British Journal of Cancer, 112(6), 957–962. https://doi.org/10.1038/bjc.2015.85

Meola, A., Rao, J., Chaudhary, N., Sharma, M., & Chang, S. D. (2018). Gold Nanoparticles for Brain Tumor Imaging: A Systematic Review. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00328

Nduom, E. K., Bouras, A., Kaluzova, M., & Hadjipanayis, C. G. (2012). Nanotechnology Applications for Glioblastoma. Neurosurgery Clinics of North America, 23(3), 439–449. https://doi.org/10.1016/j.nec.2012.04.006

Oda, K., Matsuoka, Y., Funahashi, A., & Kitano, H. (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology, 1(1). https://doi.org/10.1038/msb4100014

Ohgaki, H., & Kleihues, P. (2012). The Definition of Primary and Secondary Glioblastoma. Clinical Cancer Research, 19(4), 764–772. https://doi.org/10.1158/1078-0432.ccr-12-3002

Pall, A. E., Juratli, L., Guntur, D., Bandyopadhyay, K., & Kondapalli, K. C. (2019). A gain of function paradox: Targeted therapy for Glioblastoma associated with abnormal NHE9 expression. Journal of Cellular and Molecular Medicine, 23(11), 7859–7872. https://doi.org/10.1111/jcmm.14665

Stoyanov, G. S., & Dzhenkov, D. L. (2018). On the Concepts and History of Glioblastoma Multiforme - Morphology, Genetics and Epigenetics. Folia medica, 60(1), 48–66. https://doi.org/10.1515/folmed-2017-0069

Trevisan, F. A., Rodrigues, A. R., Lizarte Neto, F. S., Peria, F. M., Cirino, M. L. D. A., Tirapelli, D. P. D. C., & Carlotti Júnior, C. G. (2020). Apoptosis related microRNAs and MGMT in Glioblastoma cell lines submitted to treatments with ionizing radiation and temozolomide. Reports of Practical Oncology & Radiotherapy, 25(5), 714–719. https://doi.org/10.1016/j.rpor.2020.06.007

Valdés-Rives, S. A., Casique-Aguirre, D., Germán-Castelán, L., Velasco-Velázquez, M. A., & González-Arenas, A. (2017). Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. BioMed Research International, 2017, 1–12. https://doi.org/10.1155/2017/7403747

Vengoji, R., Macha, M. A., Nimmakayala, R. K., Rachagani, S., Siddiqui, J. A., Mallya, K., Gorantla, S., Jain, M., Ponnusamy, M. P., Batra, S. K., & Shonka, N. (2019). Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in Glioblastoma cells. Journal of Experimental & Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1264-2

Xu, P., Zhang, G., Hou, S., & Sha, L. G. (2018). MAPK8 mediates resistance to temozolomide and apoptosis of Glioblastoma cells through MAPK signaling pathway. Biomedicine & Pharmacotherapy, 106, 1419–1427. https://doi.org/10.1016/j.biopha.2018.06.084

Xu, Y., Stamenkovic, I., & Yu, Q. (2010). CD44 Attenuates Activation of the Hippo Signaling Pathway and Is a Prime Therapeutic Target for Glioblastoma. Cancer Research, 70(6), 2455–2464. https://doi.org/10.1158/0008-5472.can-09-2505

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
769
View
0
Share