References
Avci, N. G., Ebrahimzadeh-Pustchi, S., Akay, Y. M., Esquenazi, Y., Tandon, N., Zhu, J. J., & Akay, M. (2020). NF-κB inhibitor with Temozolomide results in significant apoptosis in Glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70392-5
Banu, Z. (2019). GLIOBLASTOMA MULTIFORME: A REVIEW OF ITS PATHOGENESIS AND TREATMENT. International Research Journal Of Pharmacy, 9(12), 7–12. https://doi.org/10.7897/2230-8407.0912283
Chaudhry R, Usama SM, Babiker HM. Physiology, Coagulation Pathways. [Updated 2020 Sep 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482253/
Cheng, X., Geng, F., Pan, M., Wu, X., Zhong, Y., Wang, C., Tian, Z., Cheng, C., Zhang, R., Puduvalli, V., Horbinski, C., Mo, X., Han, X., Chakravarti, A., & Guo, D. (2020). Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metabolism, 32(2), 229–242.e8. https://doi.org/10.1016/j.cmet.2020.06.002
Cui, P., Wei, F., Hou, J., Su, Y., Wang, J., & Wang, S. (2020). STAT3 inhibition induced temozolomide-resistant Glioblastoma apoptosis via triggering mitochondrial STAT3 translocation and respiratory chain dysfunction. Cellular Signalling, 71, 109598. https://doi.org/10.1016/j.cellsig.2020.109598
Eisele, G., & Weller, M. (2013). Targeting apoptosis pathways in Glioblastoma. Cancer Letters, 332(2), 335–345. https://doi.org/10.1016/j.canlet.2010.12.012
Forte, I., Indovina, P., Iannuzzi, C., Cirillo, D., Di Marzo, D., Barone, D., Capone, F., Pentimalli, F., & Giordano, A. (2019). Targeted therapy based on p53 reactivation reduces both Glioblastoma cell growth and resistance to temozolomide. International Journal of Oncology. Published. https://doi.org/10.3892/ijo.2019.4788
Goldsmith, K. C., & Hogarty, M. D. (2005). Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Letters, 228(1-2), 133-141.doi: 10.1016/j.canlet.2005.01.048
Guicciardi, M. E., & Gores, G. J. (2009). Life and death by death receptors. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 23(6), 1625–1637. https://doi.org/10.1096/fj.08-111005
Hooper, C., & Killick, R. (2021, March 27). Apoptosis: mitochondrial and death receptor pathways | Abcam. Abcam. https://www.abcam.com/content/apoptosis-mitochondrial-and-death-receptor-pathways
Kaushik, N. K., Kaushik, N., Wahab, R., Bhartiya, P., Linh, N. N., Khan, F., Al-Khedhairy, A. A., & Choi, E. H. (2020). Cold Atmospheric Plasma and Gold Quantum Dots Exert Dual Cytotoxicity Mediated by the Cell Receptor-Activated Apoptotic Pathway in Glioblastoma Cells. Cancers, 12(2), 457. https://doi.org/10.3390/cancers12020457
Kusaczuk, M., Kretowski, R., Naumowicz, M., Stypulkowska, A., & Cechowska-Pasko, M. (2018). Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in Glioblastoma cells. International Journal of Nanomedicine, Volume 13, 2279–2294. https://doi.org/10.2147/ijn.s158393
Lei, D., Zhang, F., Yao, D., Xiong, N., Jiang, X., & Zhao, H. (2017). MiR-338-5p suppresses proliferation, migration, invasion, and promote apoptosis of Glioblastoma cells by directly targeting EFEMP1. Biomedicine & Pharmacotherapy, 89, 957–965. https://doi.org/10.1016/j.biopha.2017.01.137
Lopez, J., & Tait, S. W. G. (2015). Mitochondrial apoptosis: killing cancer using the enemy within. British Journal of Cancer, 112(6), 957–962. https://doi.org/10.1038/bjc.2015.85
Meola, A., Rao, J., Chaudhary, N., Sharma, M., & Chang, S. D. (2018). Gold Nanoparticles for Brain Tumor Imaging: A Systematic Review. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00328
Nduom, E. K., Bouras, A., Kaluzova, M., & Hadjipanayis, C. G. (2012). Nanotechnology Applications for Glioblastoma. Neurosurgery Clinics of North America, 23(3), 439–449. https://doi.org/10.1016/j.nec.2012.04.006
Oda, K., Matsuoka, Y., Funahashi, A., & Kitano, H. (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology, 1(1). https://doi.org/10.1038/msb4100014
Ohgaki, H., & Kleihues, P. (2012). The Definition of Primary and Secondary Glioblastoma. Clinical Cancer Research, 19(4), 764–772. https://doi.org/10.1158/1078-0432.ccr-12-3002
Pall, A. E., Juratli, L., Guntur, D., Bandyopadhyay, K., & Kondapalli, K. C. (2019). A gain of function paradox: Targeted therapy for Glioblastoma associated with abnormal NHE9 expression. Journal of Cellular and Molecular Medicine, 23(11), 7859–7872. https://doi.org/10.1111/jcmm.14665
Stoyanov, G. S., & Dzhenkov, D. L. (2018). On the Concepts and History of Glioblastoma Multiforme - Morphology, Genetics and Epigenetics. Folia medica, 60(1), 48–66. https://doi.org/10.1515/folmed-2017-0069
Trevisan, F. A., Rodrigues, A. R., Lizarte Neto, F. S., Peria, F. M., Cirino, M. L. D. A., Tirapelli, D. P. D. C., & Carlotti Júnior, C. G. (2020). Apoptosis related microRNAs and MGMT in Glioblastoma cell lines submitted to treatments with ionizing radiation and temozolomide. Reports of Practical Oncology & Radiotherapy, 25(5), 714–719. https://doi.org/10.1016/j.rpor.2020.06.007
Valdés-Rives, S. A., Casique-Aguirre, D., Germán-Castelán, L., Velasco-Velázquez, M. A., & González-Arenas, A. (2017). Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. BioMed Research International, 2017, 1–12. https://doi.org/10.1155/2017/7403747
Vengoji, R., Macha, M. A., Nimmakayala, R. K., Rachagani, S., Siddiqui, J. A., Mallya, K., Gorantla, S., Jain, M., Ponnusamy, M. P., Batra, S. K., & Shonka, N. (2019). Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in Glioblastoma cells. Journal of Experimental & Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1264-2
Xu, P., Zhang, G., Hou, S., & Sha, L. G. (2018). MAPK8 mediates resistance to temozolomide and apoptosis of Glioblastoma cells through MAPK signaling pathway. Biomedicine & Pharmacotherapy, 106, 1419–1427. https://doi.org/10.1016/j.biopha.2018.06.084
Xu, Y., Stamenkovic, I., & Yu, Q. (2010). CD44 Attenuates Activation of the Hippo Signaling Pathway and Is a Prime Therapeutic Target for Glioblastoma. Cancer Research, 70(6), 2455–2464. https://doi.org/10.1158/0008-5472.can-09-2505