Probiotics as Next-Generation Allies in Poultry Health: A Systematic Review of Microbial Therapies for Sustainable Disease Control
Tufael Ahmed 1*, Mohd Hasan Mujahid 1, Prasanna Sriram Mathad 2
Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110469
Submitted: 17 August 2025 Revised: 02 October 2025 Accepted: 09 October 2025 Published: 10 October 2025
Abstract
The modern poultry industry faces a difficult balancing act: maintaining high productivity while protecting birds from a growing spectrum of bacterial and viral threats. For many years, antibiotics and vaccines offered reliable disease control, but rising antimicrobial resistance and rapidly mutating viruses now challenge their effectiveness. This shift has encouraged a renewed interest in probiotics—not just as gut-friendly microbes, but as versatile biological partners capable of reshaping poultry health from the inside out. This systematic review brings together recent evidence from experimental studies, field trials, and emerging microbiome-driven research to explore how probiotics, next-generation strains, and postbiotic metabolites help safeguard poultry. Beneficial microbes such as Lactobacillus, Bifidobacterium, and newly characterized strains support a balanced gut ecosystem, strengthen immune defenses, and restrict colonization by pathogens including Salmonella, Clostridium perfringens, and E. coli. Probiotics also appear to play an unexpectedly important role in viral protection, enhancing resilience against avian influenza, Newcastle disease, and infectious bronchitis through immune modulation and the production of bioactive antiviral compounds. Beyond classical probiotics, advances in microbiome sequencing and artificial intelligence are helping tailor microbial interventions to specific flock needs, signaling the early stages of precision poultry medicine. Postbiotics further expand these possibilities by offering safe, stable, and effective microbial-derived compounds that reinforce gut integrity and modulate inflammation. While challenges such as strain consistency, field-level variability, and regulatory oversight remain, the collective evidence points toward a promising future: healthier birds, reduced antibiotic dependence, and a more sustainable pathway for poultry farming worldwide.
Keywords: Probiotics; Poultry Health; Postbiotics; Microbiome Therapy; Antimicrobial Alternatives; Gut Immunity; Sustainable Farming
References
Aarts, E., Ederveen, T. H., Kloosterman, N., van Hout, M., Tengeler, A. C., Zündorf, G., ... & Kiliaan, A. J. (2017). Gut microbiome composition is associated with depression and anxiety in older adults. Translational Psychiatry, 7(8), e1045.
Abouelela, M. E., & Helmy, Y. A. (2024). Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms, 12(3), 430. https://doi.org/10.3390/microorganisms12030430
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121-141. https://doi.org/10.1016/j.cell.2014.03.011
Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., ... & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050-16055. https://doi.org/10.1073/pnas.1102999108
Brown, E. M., Ke, X., Hitchcock, D., Jeanfavre, S., Avila-Pacheco, J., Nakata, T., ... & Xavier, R. J. (2019). Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host & Microbe, 25(5), 668-680. https://doi.org/10.1016/j.chom.2019.04.002
Cani, P. D., Everard, A., & Duparc, T. (2019). Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology, 37, 59-68.
Cheng, H. Y., Ning, M. X., Chen, D. K., & Ma, W. T. (2019). Interactions between gut microbiota and neurological diseases: A review. Acta Neurologica Belgica, 119(1), 7-18.
Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., ... & Gibson, G. (2021). Shaping the future of probiotics and prebiotics. Trends in Microbiology, 29(8), 636-650. https://doi.org/10.1016/j.tim.2021.01.003
Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., ... & Cani, P. D. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nature Medicine, 25(7), 1096-1103.
https://doi.org/10.1038/s41591-019-0495-2
Dinan, T. G., & Cryan, J. F. (2017). The microbiome-gut-brain axis in health and disease. Gastroenterology, 152(2), 251-266.
Ghosh, T. S., Shanahan, F., O'Toole, P. W., & Jeffery, I. B. (2020). Perspectives on the gut microbiome and its relation to human health. Frontiers in Microbiology, 11, 591839.
Heiman, M. L., & Greenway, F. L. (2016). A healthy gut microbiome is dependent on dietary diversity. Molecular Metabolism, 5(5), 317-320. https://doi.org/10.1016/j.molmet.2016.02.005
Jiang, C., Li, G., Huang, P., Liu, Z., & Zhao, B. (2017). The gut microbiota and Alzheimer's disease. Journal of Alzheimer's Disease, 58(1), 1-15. https://doi.org/10.3233/JAD-161141
Johnson, A. J., Vangay, P., Al-Ghalith, G. A., Hillmann, B. M., Ward, T. L., Shields-Cutler, R. R., & Knights, D. (2020). Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host & Microbe, 25(6), 789-802. https://doi.org/10.1016/j.chom.2019.05.005
Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., ... & Krajmalnik-Brown, R. (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 5(1), 10. https://doi.org/10.1186/s40168-016-0225-7
Kim, M. S., Kim, Y., Choi, H., Kim, W., Park, S., & Lee, D. (2021). Probiotics in Alzheimer's disease and cognitive impairment: A review. Current Alzheimer Research, 18(6), 421-430.
Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., ... & Hazen, S. L. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576-585. https://doi.org/10.1038/nm.3145
Kostic, A. D., Xavier, R. J., & Gevers, D. (2014). The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology, 146(6), 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience, 34(46), 15490-15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014
Pascale, A., Marchesi, N., Marelli, C., Coppola, A., Luzi, L., Govoni, S., & Barbieri, A. (2018). Microbiota and metabolic diseases. Endocrine, Metabolic & Immune Disorders - Drug Targets, 18(1), 1-7.
Pimentel, M., Lembo, A., Chey, W. D., Zakko, S., Ringel, Y., Yu, J., ... & Paterson, C. (2019). Rifaximin therapy for patients with irritable bowel syndrome without constipation. New England Journal of Medicine, 381(8), 714-724.
Sarkar, A., Harty, S., Johnson, K. V., Moeller, A. H., & Archie, E. A. (2018). The gut microbiome as a mediator of host neurobiology: Implications for nutrition and health. Annual Review of Nutrition, 38, 289-307.
Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 31(1), 69-75. https://doi.org/10.1097/MOG.0000000000000139
Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., ... & Liao, W. (2021). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 19(1), 1-17.
Sommer, F., Anderson, J. M., Bharti, R., Raes, J., & Rosenstiel, P. (2017). The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 15(10), 630-638. https://doi.org/10.1038/nrmicro.2017.58
Suez, J., Zmora, N., Segal, E., & Elinav, E. (2018). The pros, cons, and many unknowns of probiotics. Nature Medicine, 25(5), 716-729. https://doi.org/10.1038/s41591-019-0439-x
Vaghef-Mehrabany, E., Alipour, B., Homayouni-Rad, A., Sharif, S. K., Vaghef-Mehrabany, L., & Asghari-Jafarabadi, M. (2014). Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition, 30(4), 430-435. https://doi.org/10.1016/j.nut.2013.09.007
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., ... & Elinav, E. (2018). Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, 174(6), 1388-1405. https://doi.org/10.1016/j.cell.2018.08.041