Biosensors and Nanotheranostics
Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
83
Citations
56.9k
Views
60
Articles
REVIEWS (Open Access)
Advancements in Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering: A Systematic Review and Meta-Analysis
Md. Taufique Hasan Bhuiyan Sezan1*, Raihan Mia 2
Biosensors and Nanotheranostics 4 (1) 1-8 https://doi.org/10.25163/biosensors.4110516
Submitted: 14 September 2025 Revised: 10 November 2025 Accepted: 16 November 2025 Published: 17 November 2025
Abstract
The clinical potential of nucleic acid-based therapies in regenerative medicine is increasingly recognized, yet their translation remains limited by delivery efficiency, safety, and targeted release challenges. This systematic review and meta-analysis examine the current landscape of biomaterial-based nucleic acid delivery systems, focusing on viral and non-viral vectors integrated into scaffold platforms for in situ tissue engineering. Literature was systematically collected from peer-reviewed sources between 2009 and 2025, evaluating studies that assessed delivery efficiency, tissue-specific targeting, and therapeutic outcomes. Viral vectors, including adenovirus, adeno-associated virus (AAV), and lentivirus, demonstrated high transduction efficiency but were associated with immunogenicity and risks of insertional mutagenesis. In contrast, non-viral nanocarriers—lipid-based nanoparticles, polymeric nanoparticles, inorganic nanoparticles, and biomimetic vectors such as exosomes—exhibited enhanced biocompatibility, reduced toxicity, and customizable release profiles. Scaffold integration, including injectable hydrogels, three-dimensional porous scaffolds, and sheet-like systems, improved local retention, spatiotemporal release, and functional tissue regeneration. Meta-analysis of preclinical studies indicated significantly improved gene delivery efficiency and tissue repair outcomes when non-viral carriers were combined with tailored scaffolds (p < 0.05). However, limitations such as mechanical weakness in hydrogels, light penetration constraints, long-term bioaccumulation, and manufacturing challenges remain. This review highlights the translational potential of combining non-viral nucleic acid vectors with advanced biomaterials, offering a roadmap for clinical implementation. Addressing the identified safety and scalability challenges could accelerate the adoption of these systems for targeted, efficient, and safe regenerative therapies.
Keywords: Nucleic acid delivery, non-viral vectors, viral vectors, biomaterial scaffolds, tissue engineering, regenerative medicine, hydrogels, 3D scaffolds
References
Acri, T. M., Laird, N. Z., Jaidev, L. R., Meyerholz, D. K., Salem, A. K., & Shin, K. (2021). Nonviral gene delivery embedded in biomimetically mineralized matrices for bone tissue engineering. Tissue Engineering Part A, 27(11–12), 1074–1083. https://doi.org/10.1089/ten.tea.2020.0206
Adams, D., Gonzalez-Duarte, A., O’Riordan, W., Yang, C., Ueda, M., Kristen, A., et al. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New England Journal of Medicine, 379, 11–21. https://doi.org/10.1056/NEJMoa1716153
Baba, T., Liska, V., Hofmann-Lehmann, R., Vlasak, J., Xu, W., Ayehunie, S., et al. (2000). Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nature Medicine, 6, 200–206. https://doi.org/10.1038/72309
Bae, Y., Lee, S., Green, E. S., Park, J. H., Ko, K. S., Han, J., & Choi, J. S. (2016). Characterization of basic amino acids-conjugated PAMAM dendrimers as gene carriers for human adipose-derived mesenchymal stem cells. International Journal of Pharmaceutics, 501, 75–86. https://doi.org/10.1016/j.ijpharm.2016.01.063
Bennasser, Y., Yeung, M., & Jeang, K.-T. (2007). RNAi therapy for HIV infection: Principles and practicalities. BioDrugs, 21, 17–22. https://doi.org/10.2165/00063030-200721010-00003
Bobbin, M. L., Burnett, J. C., & Rossi, J. J. (2015). Interference approaches for treatment of HIV-1 infection. Genome Medicine, 7(1), 50. https://doi.org/10.1186/s13073-015-0174-y
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L., & Gao, G. (2021). Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy, 6(1), 53. https://doi.org/10.1038/s41392-021-00487-6
Castleberry, S. A., Almquist, B. D., Li, W., Reis, T., Chow, J., Mayner, S., & Hammond, P. T. (2016a). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Advanced Materials, 28(9), 1809–1817. https://doi.org/10.1002/adma.201503565
Castleberry, S. A., Golberg, A., Sharkh, M. A., Khan, S., Almquist, B. D., Austen, W. G., Yarmush, M. L., & Hammond, P. T. (2016b). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials, 95, 22–34. https://doi.org/10.1016/j.biomaterials.2016.04.007
Castanotto, D., & Rossi, J. J. (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature, 457, 426–433. https://doi.org/10.1038/nature07758
Chambers, P., Ziminska, M., Elkashif, A., Wilson, J., Redmond, J., Tzagiollari, A., Ferreira, C., Balouch, A., Bogle, J., Donahue, S. W., et al. (2023). The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. Journal of Controlled Release, 362, 489–501. https://doi.org/10.1016/j.jconrel.2023.09.006
Chandler, L. A., Doukas, J., Gonzalez, A. M., Hoganson, D. K., Gu, D. L., Ma, C., Nesbit, M., Crombleholme, T. M., Herlyn, M., Sosnowski, B. A., et al. (2000). FGF2-targeted adenovirus encoding platelet-derived growth factor-B enhances de novo tissue formation. Molecular Therapy, 2, 153–160. https://doi.org/10.1006/mthe.2000.0102
Chen, J., Zhu, H., Xia, J., Zhu, Y., Xia, C., Hu, Z., Jin, Y., Wang, J., He, Y., Dai, J., et al. (2023). High-performance multi-dynamic bond cross-linked hydrogel with spatiotemporal siRNA delivery for gene–cell combination therapy of intervertebral disc degeneration. Advanced Science, 10(3), 2206306. https://doi.org/10.1002/advs.202206306
Chen, P., Li, Y., Wei, P., Liang, L., Li, B., Cao, Y., et al. (2022). siRNA targeting PD-L1 delivered with attenuated Salmonella enhanced the anti-tumor effect of lenvatinib on mice bearing hepatocellular carcinoma. International Immunopharmacology, 111, 109127. https://doi.org/10.1016/j.intimp.2022.109127
Chen, Y., Chen, W., Ren, Y., Li, S., Liu, M., Xing, J., Han, Y., Chen, Y., Tao, R., Guo, L., et al. (2022). Lipid nanoparticle-encapsulated VEGFa siRNA facilitates cartilage formation by suppressing angiogenesis. International Journal of Biological Macromolecules, 221, 1313–1324. https://doi.org/10.1016/j.ijbiomac.2022.09.065
DeVincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., et al. (2010). A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8800–8805. https://doi.org/10.1073/pnas.0912186107
Ding, L., Zhu, Z., Wang, Y., Zeng, L., Wang, T., Luo, J., Zou, T.-B., Li, R., Sun, X., Zhou, G., et al. (2019). LINGO-1 shRNA loaded by Pluronic F-127 promotes functional recovery after ventral root avulsion. Tissue Engineering Part A, 25(19–20), 1381–1395. https://doi.org/10.1089/ten.tea.2018.0282
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498. https://doi.org/10.1038/35078107
Finkel, Z., Esteban, F., Rodriguez, B., Clifford, T., Joseph, A., Alostaz, H., Dalmia, M., Gutierrez, J., Tamasi, M. J., Zhang, S. M., et al. (2024). AAV6 mediated Gsx1 expression in neural stem progenitor cells promotes neurogenesis and restores locomotor function after contusion spinal cord injury. Neurotherapeutics, 21, e00362. https://doi.org/10.1016/j.neurot.2024.e00362
Feng, G., Zha, Z., Huang, Y., Li, J., Wang, Y., Ke, W., Chen, H., Liu, L., Song, Y., & Ge, Z. (2018). Sustained and bioresponsive two-stage delivery of therapeutic miRNA via polyplex micelle-loaded injectable hydrogels for inhibition of intervertebral disc fibrosis. Advanced Healthcare Materials, 7(23), e1800623. https://doi.org/10.1002/adhm.201800623
Fu, Z., Lai, Y., Zhuang, Y., & Lin, F. (2023). Injectable heat-sensitive nanocomposite hydrogel for regulating gene expression in the treatment of alcohol-induced osteonecrosis of the femoral head. APL Bioengineering, 7(1), 016107. https://doi.org/10.1063/5.0130711
Gan, M., Zhou, Q., Ge, J., Zhao, J., Wang, Y., Yan, Q., Wu, C., Yu, H., Xiao, Q., Wang, W., et al. (2021). Precise in situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomaterialia, 135, 289–303. https://doi.org/10.1016/j.actbio.2021.08.041
Gao, Y., Wang, K., Wu, S., Wu, J., Zhang, J., Li, J., Lei, S., Duan, X., & Men, K. (2024). Injectable and photocurable gene scaffold facilitates efficient repair of spinal cord injury. ACS Applied Materials & Interfaces, 16(4), 4375–4394. https://doi.org/10.1021/acsami.3c14902
Geisbert, T. W., Lee, A. C., Robbins, M., Geisbert, J. B., Honko, A. N., Sood, V., et al. (2010). Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: A proof-of-concept study. The Lancet, 375(9729), 1896–1905. https://doi.org/10.1016/S0140-6736(10)60357-1
Gong, F., Zhang, D., Zhang, J., Wang, L., Zhan, W., Qi, J., et al. (2014). siRNA-mediated gene silencing of MexB from the MexA–MexB–OprM efflux pump in Pseudomonas aeruginosa. BMB Reports, 47(4), 203–208. https://doi.org/10.5483/BMBRep.2014.47.4.040
Guo, R., Xu, S., Ma, L., Huang, A., & Gao, C. (2010). Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full-thickness incisional wounds in a porcine model. Biomaterials, 31(28), 7308–7320. https://doi.org/10.1016/j.biomaterials.2010.06.013
He, L., Ding, Y., Zhao, Y., So, K. K., Peng, X. L., Li, Y., Yuan, J., He, Z., Chen, X., Sun, H., et al. (2021). CRISPR/Cas9/AAV9-mediated in vivo editing identifies MYC regulation of 3D genome in skeletal muscle stem cell. Stem Cell Reports, 16, 2442–2458. https://doi.org/10.1016/j.stemcr.2021.08.011
Huynh, C. T., Nguyen, M. K., Tonga, G. Y., Longé, L., Rotello, V. M., & Alsberg, E. (2016). Photocleavable hydrogels for light-triggered siRNA release. Advanced Healthcare Materials, 5(3), 305–310. https://doi.org/10.1002/adhm.201500778
Lei, L., Liu, Z., Yuan, P., Jin, R., Wang, X., Jiang, T., & Chen, X. (2019). Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. Journal of Materials Chemistry B, 7, 2722–2735. https://doi.org/10.1039/C9TB00025A
Li, D.-D., Pan, J.-F., Ji, Q.-X., Yu, X.-B., Liu, L.-S., Li, H., Jiao, X.-J., & Wang, L. (2016). Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. Journal of Materials Science: Materials in Medicine, 27, 134. https://doi.org/10.1007/s10856-016-5743-0
Li, H., Ji, Q., Chen, X., Sun, Y., Xu, Q., Deng, P., Hu, F., & Yang, J. (2017). Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. Journal of Biomedical Materials Research Part A, 105, 265–273. https://doi.org/10.1002/jbm.a.35900
Liu, J., Cui, Y., Kuang, Y., Xu, S., Lu, Q., Diao, J., & Zhao, N. (2021). Hierarchically porous calcium–silicon nanosphere-enabled co-delivery of microRNA-210 and simvastatin for bone regeneration. Journal of Materials Chemistry B, 9(16), 3573–3583. https://doi.org/10.1039/D1TB00063B
Liu, W., Yu, M., Chen, F., Wang, L., Ye, C., Chen, Q., Zhu, Q., Xie, D., Shao, M., & Yang, L. (2021). A novel delivery nanobiotechnology: Engineered miR-181b exosomes improved osteointegration by regulating macrophage polarization. Journal of Nanobiotechnology, 19, 269. https://doi.org/10.1186/s12951-021-01015-y
Luo, Z., Li, J., Qu, J., Sheng, W., Yang, J., & Li, M. (2019). Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165–Ang-1 coexpression plasmid for dermal tissue regeneration. Journal of Materials Chemistry B, 7(1), 80–94. https://doi.org/10.1039/C8TB01424H
Malek-Khatabi, A., Javar, H. A., Dashtimoghadam, E., Ansari, S., Hasani-Sadrabadi, M. M., & Moshaverinia, A. (2020). In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomaterialia, 108, 326–336. https://doi.org/10.1016/j.actbio.2020.03.008
McCarthy, H. O., McCaffrey, J., McCrudden, C. M., Zholobenko, A., Ali, A. A., McBride, J. W., Massey, A. S., Pentlavalli, S., Chen, K.-H., Cole, G., et al. (2014). Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 189, 141–149. https://doi.org/10.1016/j.jconrel.2014.06.048
Moncal, K. K., Tigli Aydin, R. S., Godzik, K. P., Acri, T. M., Heo, D. N., Rizk, E., Wee, H., Lewis, G. S., Salem, A. K., & Ozbolat, I. T. (2022). Controlled co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats. Biomaterials, 281, 121333. https://doi.org/10.1016/j.biomaterials.2021.121333
Motamedi, H., Ari, M. M., Alvandi, A., & Abiri, R. (2024). Principle, application and challenges of developing siRNA-based therapeutics against bacterial and viral infections: A comprehensive review. Frontiers in Microbiology, 15, 1393646. https://doi.org/10.3389/fmicb.2024.1393646
Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21), 5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064
Qu, M., Kim, H.-J., Zhou, X., Wang, C., Jiang, X., Zhu, J., Xue, Y., Tebon, P., Sarabi, S. A., Ahadian, S., et al. (2020). Biodegradable microneedle patch for transdermal gene delivery. Nanoscale, 12(32), 16724–16729. https://doi.org/10.1039/D0NR02759F
Article metrics
View details
0
Downloads
0
Citations
34
Views
0
Save
Save
0
Citation
Citation
34
View
View
0
Share
Share