Bioinfo Chem

System biology and Infochemistry
0
Citations
6.8k
Views
8
Articles
RESEARCH ARTICLE   (Open Access)

Virtual Screening and Computational Analysis of Natural Compound Targeting CDK4/6 for Pan-Cancer Therapeutic Potential

Shahadat Hossain1*, Farhana Ferdushi Aion2, Badhan Mojumder2

+ Author Affiliations

Bioinfo Chem 7 (1) 1-8 https://doi.org/10.25163/bioinformatics.7110529

Submitted: 05 July 2025 Revised: 18 September 2025  Accepted: 23 September 2025  Published: 25 September 2025 


Abstract

Background: The CDK4 and CDK6 regulate the transition from G1 phase to the S phase in the cell cycle. Overexpression of CDK4, or CDK6 leads to uncontrolled proliferation and is seen in many cancers. Palbociclib is effective but limited through toxicity and resistance developed to it. Besides, very few comparative studies have evaluated natural compound Luteolin against CDK4/6. Consequently, the study intends to assess the inhibitory potential, binding affinity, and structural stability of Luteolin and Palbociclib through molecular docking and computational interactions studies.

Methods: This study used an in silico comparative study of Luteolin and Palbociclib. The 3D structures of CDK4 (2W9Z) and CDK6 (2EUF) were obtained using PyMOL followed by docking using PyRx. Analysis of protein target classification, pathway enrichment, and interaction networks were carried out using Swiss Target Prediction, ShinyGO, and STRING database. Graph Pad Prism was used to analyze and visualize of the docking scores and RMSD stability profiles.

Results: The docking outcomes revealed that the binding affinities of Luteolin with CDK6 (-9.7 kcal/mol) and CDK4 (-8.7 kcal/mol) was high. The compound was found to target several receptors, enzymes and kinases. This shows that the pathways PI3K-AKT, MAPK and hormones were heavily involved According to RMSD profiling, the Luteolin-bound complexes were more stable than Palbociclib.

Conclusion: Luteolin appears a low-toxicity, multi-target CDK4/6 inhibitor with therapeutic potential across cancers. Because it can hit different signaling pathways at the same time, the drug can overcome limitations of palbociclib type drugs.

Keywords: CDK4/6 Inhibition, Luteolin, Molecular Docking, Palbociclib, Cell Cycle Regulation

References

Akter, M. F., Islam, M. R., Manica, A. K., Siddique, M. A. B., Tufael (2022). "Structural and Pharmacological Insights into Withaferin a Binding to Mutant p53 (R248Q): Multi-Faceted Inhibitor in Cancer Treatment", Journal of Angiotherapy, 6(2),1-8,10432. https://doi.org/10.25163/angiotherapy.6210432  

Akter, M. F., Manica, A. K., Siddique, M. A. B., Tufael, Islam, M. R., Nusrat, S. (2025). "Structural Insights into TEM-1 β-Lactamase-Mediated Ceftriaxone Resistance in Escherichia coli: A Molecular Docking and Toxicity Analysis", Microbial Bioactives, 8(1), 1-11, 10447 https://doi.org/10.25163/microbbioacts.8110447   

Amin, M. S., Rashid, M. J., Tufael, Rahman, A. (2025). "Probiotics as Emerging Neurotherapeutics in Spinal Cord Injury: Modulating Inflammation, Infection, and Regeneration", Microbial Bioactives, 8(1), 1-11, 10290 https://doi.org/10.25163/microbbioacts.8110290

Bizuayehu, H. M., Ahmed, K. Y., Kibret, G. D., Dadi, A. F., Belachew, S. A., Bagade, T., Tegegne, T. K., Venchiarutti, R. L., Kibret, K. T., Hailegebireal, A. H., Assefa, Y., Khan, M. N., Abajobir, A., Alene, K. A., Mengesha, Z., Erku, D., Enquobahrie, D. A., Minas, T. Z., Misgan, E., & Ross, A. G. (2024). Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Network Open, 7(11), e2443198. https://doi.org/10.1001/jamanetworkopen.2024.43198

EL Omri, A., Han, J., Kawada, K., Ben Abdrabbah, M., & Isoda, H. (2012). Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways. Brain Research, 1437, 16–25. https://doi.org/10.1016/j.brainres.2011.12.019

Gao, H.-L., Yu, X.-J., Feng, Y.-Q., Yang, Y., Hu, H.-B., Zhao, Y.-Y., Zhang, J.-H., Liu, K.-L., Zhang, Y., Fu, L.-Y., Li, Y., Qi, J., Qiao, J.-A., & Kang, Y.-M. (2023). Luteolin Attenuates Hypertension via Inhibiting NF-κB-Mediated Inflammation and PI3K/Akt Signaling Pathway in the Hypothalamic Paraventricular Nucleus. Nutrients, 15(3), 502. https://doi.org/10.3390/nu15030502

Goel, S., Bergholz, J. S., & Zhao, J. J. (2022). Targeting CDK4 and CDK6 in cancer. Nature Reviews Cancer, 22(6), 356–372. https://doi.org/10.1038/s41568-022-00456-3

Guo, X., Yu, X., Zheng, B., Zhang, L., Zhang, F., Zhang, Y., Li, J., Pu, G., Zhang, L., & Wu, H. (2021). Network Pharmacology-Based Identification of Potential Targets of Lonicerae japonicae Flos Acting on Anti-Inflammatory Effects. BioMed Research International, 2021(1). https://doi.org/10.1155/2021/5507003

Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery, 16(12), 829–842. https://doi.org/10.1038/nrd.2017.178

Hu, Y., Gao, J., Wang, M., & Li, M. (2021). Potential Prospect of CDK4/6 Inhibitors in Triple-Negative Breast Cancer. Cancer Management and Research, Volume 13, 5223–5237. https://doi.org/10.2147/CMAR.S310649

Huang, A., Fang, G., Pang, Y., & Pang, Z. (2019). A Network Pharmacology Approach to Explore Mechanism of Action of Longzuan Tongbi Formula on Rheumatoid Arthritis. Evidence-Based Complementary and Alternative Medicine, 2019, 1–13. https://doi.org/10.1155/2019/5191362   

Islam, M. R., Manica, A. K., Akter, M. F., Siddique, M. A. B., Tufael (2023). "In Silico Drug-Likeness and Safety Profiling of Tinosporaside: A Natural Alternative to Celecoxib for COX-2 Inhibition", Journal of Primeasia, 4(1),1-8,10434. https://doi.org/10.25163/primeasia.4110434 

Li, Q., Wang, S., Wu, Z., & Liu, Y. (2020). DDX11-AS1exacerbates bladder cancer progression by enhancing CDK6 expression via suppressing miR-499b-5p. Biomedicine & Pharmacotherapy, 127, 110164. https://doi.org/10.1016/j.biopha.2020.110164

Li, X., Niu, C., Yi, G., Zhang, Y., Jin, W., Zhang, Z., Zhang, W., & Li, B. (2024). Quercetin inhibits the epithelial-mesenchymal transition and reverses CDK4/6 inhibitor resistance in breast cancer by regulating circHIAT1/miR-19a-3p/CADM2 axis. PLOS ONE, 19(7), e0305612. https://doi.org/10.1371/journal.pone.0305612

Lopez-Tarruella, S., Echavarria, I., Jerez, Y., Herrero, B., Gamez, S., & Martin, M. (2022). How we Treat HR-Positive, HER2-Negative Early Breast Cancer. Future Oncology, 18(8), 1003–1022. https://doi.org/10.2217/fon-2021-0668

Merecz-Sadowska, A., Sadowski, A., Zielinska-Blizniewska, H., Zajdel, K., & Zajdel, R. (2025). Network Pharmacology as a Tool to Investigate the Antioxidant and Anti-Inflammatory Potential of Plant Secondary Metabolites—A Review and Perspectives. International Journal of Molecular Sciences, 26(14), 6678. https://doi.org/10.3390/ijms26146678  

Manica, A. K., Akter, M. F., Islam, M. R., Tufael, Siddique, M. A. B. (2022). "Computational Exploration of Xanthohumol as a Safer Natural Substitute for Tamoxifen in Estrogen Receptor-Positive Breast Cancer", Journal of Angiotherapy, 6(2),1-8,10431. https://doi.org/10.25163/angiotherapy.6210431  

Manica, A. K., Tufael, Siddique, M. A. B., Akter, M. F., Islam, M. R. (2023). "In Silico Repurposing of FDA-approved Drugs Targeting Keap1-NRF2 Axis in Hepatocellular Carcinoma for Precision Therapy", Journal of Precision Biosciences, 5(1),1-8,10436. https://doi.org/10.25163/biosciences.5110436     

Manica, A. K., Siddique, M. A. B., Tufael, Akter, M. F., Islam, M. R. (2024). "Targeted Drug Repurposing in Precision Oncology Reveals Celecoxib as a GSK-3β Inhibitor in Hepatocellular Carcinoma", Journal of Precision Biosciences, 6(1),1-8,10440. https://doi.org/10.25163/biosciences.6110440   

Manica, A. K., Islam, M. R., Siddique, M. A. B., Akter, M. F., Tufael (2024). "Tanshinone IIA as a Promising Natural Inhibitor of the STING Pathway: A Computational Exploration Toward Neuroinflammatory Therapy", Australian Herbal Insight, 7(1),1-8,10441. https://doi.org/10.25163/herbal.7110441  

Moradifar, F., Sepahdoost, N., Tavakoli, P., & Mirzapoor, A. (2025). Multi-functional dressings for recovery and screenable treatment of wounds: A review. Heliyon, 11(1), e41465. https://doi.org/10.1016/j.heliyon.2024.e41465

Nardone, V., Barbarino, M., Angrisani, A., Correale, P., Pastina, P., Cappabianca, S., Reginelli, A., Mutti, L., Miracco, C., Giannicola, R., Giordano, A., & Pirtoli, L. (2021). CDK4, CDK6/cyclin-D1 Complex Inhibition and Radiotherapy for Cancer Control: A Role for Autophagy. International Journal of Molecular Sciences, 22(16), 8391. https://doi.org/10.3390/ijms22168391

Rahman, S. S., Klamrak, A., Mahat, N. C., Rahat, R. H., Nopkuesuk, N., Kamruzzaman, M., Janpan, P., Saengkun, Y., Nabnueangsap, J., Soonkum, T., Sangkudruea, P., Jangpromma, N., Kulchat, S., Patramanon, R., Chaveerach, A., Daduang, J., & Daduang, S. (2025). Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients, 17(3), 594. https://doi.org/10.3390/nu17030594

Ran, R., Ma, Y., Wang, H., Yang, J., & Yang, J. (2022). Treatment strategies for hormone receptor-positive, human epidermal growth factor receptor 2-positive (HR+/HER2+) metastatic breast cancer: A review. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.975463

Roufayel, R., Mezher, R., & Storey, K. B. (2021). The Role of Retinoblastoma Protein in Cell Cycle Regulation: An Updated Review. Current Molecular Medicine, 21(8), 620–629. https://doi.org/10.2174/1566524020666210104113003

Sager, R. A., Backe, S. J., Ahanin, E., Smith, G., Nsouli, I., Woodford, M. R., Bratslavsky, G., Bourboulia, D., & Mollapour, M. (2022). Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nature Reviews Urology, 19(5), 305–320. https://doi.org/10.1038/s41585-022-00571-8

Singh Tuli, H., Rath, P., Chauhan, A., Sak, K., Aggarwal, D., Choudhary, R., Sharma, U., Vashishth, K., Sharma, S., Kumar, M., Yadav, V., Singh, T., Yerer, M. B., & Haque, S. (2022). Luteolin, a Potent Anticancer Compound: From Chemistry to Cellular Interactions and Synergetic Perspectives. Cancers, 14(21), 5373. https://doi.org/10.3390/cancers14215373 

Siddique, M. A. B., Debnath, A., Ullah, M. S., Amin, M. S., Rahman, A., Mou, M. A., Biswash, M. A. R., Tamim, M. S. B. N., Akter, M. S., Ahmed, B., Numan, A. A., Shabuj, M. M. H. (2025). "Targeting p38 MAPK: Molecular Docking and Therapeutic Insights for Alzheimer’s Disease Management", Journal of Primeasia, 6(1),1-11,10116. https://doi.org/10.25163/primeasia.6110116 

Sun, C., Jiang, C., Wang, X., Ma, S., Zhang, D., & Jia, W. (2024). MR-based radiomics predicts CDK6 expression and prognostic value in high-grade glioma. Academic Radiology, 31(12), 5141-5153. https://doi.org/10.1016/j.acra.2024.06.006  

Tadesse, S., Yu, M., Kumarasiri, M., Le, B. T., & Wang, S. (2015). Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle, 14(20), 3220–3230. https://doi.org/10.1080/15384101.2015.1084445

Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578  

Tufael, Debnath, A., Siddique, M. A. B., Nath, N. D. (2023). "Microbial Therapeutics in Cancer Treatment - Challenges and Opportunities in Breast Cancer Management", Clinical Epidemiology & Public Health, 1(1),1-7,10277. https://doi.org/10.25163/health.1110277 

Tufael, Md Mostafizur Rahman et al. (2024). Combined Biomarkers for Early Diagnosis of Hepatocellular Carcinoma, Journal of Angiotherapy, 8(5), 1-12, 9665. https://doi.org/10.25163/angiotherapy.859665

Tufael, Kar, A., Rashid, M. H. O., Sunny, A. R., Raposo, A., Islam, M. S., Hussain, M. A., Hussen, M. A., Han, H., Coutinho, H. D. M., Ullah, M. S., & Rahman, M. M. (2024). Diagnostic efficacy of tumor biomarkers AFP, CA19-9, and CEA in Hepatocellular carcinoma patients. Journal of Angiotherapy, 8(4), Article 9513. https://doi.org/10.25163/angiotherapy.849513

Tufael, Akter, M. F., Islam, M. R., Siddique, M. A. B., Hassan, N., Numan, A. A., Naher, A. A., Shabuj, M. M. H., Manica, A. K., Shaikat, B., Rabbani, T. B. (2025). "Encoded Resistance: Structural Disruption and Signaling Crosstalk Undermine Sorafenib Binding in Mutant VEGFR2-Driven HCC", Paradise, 1(1),1-9,10427. https://doi.org/10.25163/paradise.1110427

Wang, W., Yang, C., Xia, J., Li, N., & Xiong, W. (2023). Luteolin is a potential inhibitor of COVID-19: An in silico analysis. Medicine, 102(38), e35029. https://doi.org/10.1097/MD.0000000000035029

Wang, X., Zhang, L., Dai, Q., Si, H., Zhang, L., Eltom, S. E., & Si, H. (2021). Combined Luteolin and Indole-3-Carbinol Synergistically Constrains ERα-Positive Breast Cancer by Dual Inhibiting Estrogen Receptor Alpha and Cyclin-Dependent Kinase 4/6 Pathway in Cultured Cells and Xenograft Mice. Cancers, 13(9), 2116. https://doi.org/10.3390/cancers13092116

Yan, J., Zhang, G., Pan, J., & Wang, Y. (2014). α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. International Journal of Biological Macromolecules, 64, 213–223. https://doi.org/10.1016/j.ijbiomac.2013.12.007

Zhao, X., Yu, X., Li, W., Chen, Z., Niu, T., Weng, X., Wang, L., & Liu, X. (2024). CDK6 as a Biomarker for Immunotherapy, Drug Sensitivity, and Prognosis in Bladder Cancer: Bioinformatics and Immunohistochemical Analysis. International Journal of Medical Sciences, 21(12), 2414–2429. https://doi.org/10.7150/ijms.101043


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
28
View
0
Share