Microbial Bioactives | Online ISSN 2209-2161
REVIEWS   (Open Access)

Microbial-Based Strategies for Eco-Friendly Odor Management and Enhanced Environmental Sustainability in Poultry Production

Zubaida Amir Al-Heety 1, Ali Kareem Al-Nasseri 1*

+ Author Affiliations

Microbial Bioactives 8(1) 1-8 https://doi.org/10.25163/microbbioacts.8110467

Submitted: 24 July 2025  Revised: 12 September 2025  Published: 19 September 2025 

Probiotics provide a sustainable, natural approach to mitigate poultry odors, improving environmental quality, community health, and eco-friendly farming practices.

Abstract


Odor emissions from poultry farms, primarily consisting of ammonia, hydrogen sulfide, and volatile organic compounds, present persistent challenges to environmental quality, human health, and community acceptance of poultry operations. Conventional odor mitigation strategies, such as chemical additives and ventilation systems, often fall short due to high costs, secondary pollution, and limited long-term effectiveness. In recent years, probiotics—beneficial microorganisms that enhance gut health—have emerged as a promising, eco-friendly alternative for odor management. Probiotics modulate the gastrointestinal microbial community, improve nutrient absorption, and enhance feed efficiency, collectively reducing nitrogen excretion and suppressing the proliferation of odor-causing bacteria in manure. Strains of Lactobacillus, Bacillus, and Saccharomyces have demonstrated significant potential in lowering odorous compounds through enzymatic degradation and competitive exclusion. Beyond odor control, probiotic supplementation contributes to improved bird health, enhanced immune function, and overall farm productivity, aligning with growing consumer demand for sustainable and antibiotic-free poultry production. This review synthesizes current evidence on the mechanisms by which probiotics influence odor generation, highlights key experimental findings supporting their efficacy, and identifies challenges in strain selection, dosage optimization, and long-term implementation. By integrating probiotics into poultry management practices, farms can reduce environmental impact, improve air quality, and maintain better community relations, ultimately advancing sustainable and responsible poultry production. Probiotic-based interventions thus represent a viable pathway toward environmentally friendly, health-conscious, and economically beneficial poultry farming.

Keywords: Poultry odor, probiotics, ammonia emissions, microbial modulation, sustainable poultry production

References


Abdelrazek, H. M. A., Abuzead, S. M. M., Ali, S. A., El-Genaidy, H. M. A., & Abdel-Hafez, S. A. (2016). Effect of citric and acetic acid water acidification on broiler’s performance with respect to thyroid hormone levels. Advances in Animal and Veterinary Sciences, 4, 271–278.

Baltic, B., Starcevic, M., Ðordevic, J., Mrdovic, B., & Markovic, R. (2017). Importance of medium chain fatty acids in animal nutrition. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Zvenigorod, Russia, 4–7 September 2017.

Banupriya, S., Kathirvelan, C., & Joshua, P. P. (2016). Significance of feed acidification in poultry feed. International Journal of Science and Environmental Technology, 5, 1596–1599.

Barrett, J. R. (2016). Poultry production and environmental concerns: Exploring the role of probiotics. Environmental Health Perspectives, 124(5), A93–A96.

Benhabiles, M., Salah, R., Lounici, H., Drouiche, N., Goosen, M., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29, 48–56.

Broom, L. (2015). Organic acids for improving intestinal health of poultry. World’s Poultry Science Journal, 71, 630–642.

Burns, R., Moody, L., & Muhlbauer, R. (2009). Deep pit swine facility flash fires and explosions: Sources, occurrences, factors, and management. https://www.pork.org/research/deep-pit-swine-facility-flash-fires-and-explosions-sources-occurrences-factors-and-management/

Cheung, R. C. F., Wong, J. H., Pan, W. L., Chan, Y. S., Yin, C. M., Dan, X. L., Wang, H. X., Fang, E. F., Lam, S. K., Ngai, P. H. K., et al. (2014). Antifungal and antiviral products of marine organisms. Applied Microbiology and Biotechnology, 98, 3475–3494.

Clanton, C. J., Schmidt, D. R., Nicolai, R. E., Goodrich, P. R., Jacobson, L. D., Janni, K. A., & Weisberg, S. (1999). Dynamic olfactometry variability in determining odors dilution to threshold. Transactions of the ASAE, 42, 1103–1112.

Dahiya, J. P., Wilkie, D. C., Van Kessel, A. G., & Drew, M. D. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Animal Feed Science and Technology, 129(1–2), 60–88.

Davidson, P. M., Taylor, T. M., & David, J. R. D. (2020). Antimicrobials in food. CRC Press.

Dibner, J. J., & Richards, J. D. (2005). Antibiotic growth promoters in agriculture: History and mode of action. Poultry Science, 84(4), 634–643.

 DooKashi. (2015). DooKashi for Poultry Bokashi Bran powered chicken coop deodorizer manure compost accelerator for all types of bedding and nesting.

Dörper, A., Veldkamp, T., & Dicke, M. (2020). Use of black soldier fly and house fly in feed to promote sustainable poultry production. Journal of Insects as Food and Feed, 6, 1–20.

El-Hack, M. A., Shafi, M., Alghamdi, W., Abdelnour, S., Shehata, A., Noreldin, A., Ashour, E., Swelum, A., Al-Sagan, A., Alkhateeb, M., et al. (2020). Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture, 10, 339.

Fabian-Wheeler, E. E., Hile, M. L., Murphy, D. J., Hill, D. E., Meinen, R., & Brandt, R. C., Elliott, H. A., & Hofstetter, D. (2017). Operator exposure to hydrogen sulfide from dairy manure storages containing gypsum bedding. Journal of Agricultural Safety and Health, 23, 9–22.

Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66(5), 365–378.

Gaggia, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(S1), S15–S28.

Hossain, S., & Blair, R. (2007). Chitin utilisation by broilers and its effect on body composition and blood metabolites. British Poultry Science, 48, 33–38.

Ibitoye, E., Lokman, I., Hezmee, M., Goh, Y., Zuki, A., Jimoh, A., & Danmaigoro, A., Nicholas, N. P. (2019). Gut health and serum growth hormone levels of broiler chickens fed dietary chitin and chitosan from cricket and shrimp. Poultry Science, 98, 745–752.

Jacobson, L. D., Guo, H., Schmidt, D. R., Nicolai, R. E., Zhu, J., & Janni, K. A. (2005). Development of the offset model for determination of odor-annoyance-free setback distances from animal production sites: Part I. Review and experiment. Transactions of the ASAE, 48, 2259–2268.

Jadhao, G. M., Sawai, D. H., Rewatkar, H. N., Kolhe, R. P., Bansod, A. P., & Nandeshwar, J. D. (2019). Effect of organic acids with probiotic supplementation on immunity and blood biochemical status of broiler chicken. International Journal of Current Microbiology and Applied Sciences, 8, 1952–1959.

Khan, S. H., & Iqbal, J. (2016). Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research, 44, 359–369.

Khempaka, S., Chitsatchapong, C., & Molee, W. (2011). Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. Journal of Applied Poultry Research, 20, 1–11.

Khempaka, S., Mochizuki, M., Koh, K., & Karasawa, Y. (2006). Effect of chitin in shrimp meal on growth performance and digestibility in growing broilers. Journal of Poultry Science, 43, 339–343.

Kreis, R. D. (1978). Control of animal production odors: The state-of-the-art (EPA Environmental Protection Technology Series, EPA-600/2-78-083). U.S. Environmental Protection Agency.

Lan, P. T. N., Sakamoto, K., & Benno, Y. (2016). Effects of probiotic supplementation on intestinal microflora and odor emission in poultry farms. Microbial Ecology in Health and Disease, 27(1), 302–310.

Lokman, I. H., Ibitoye, E. B., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2019). Effects of chitin and chitosan from cricket and shrimp on growth and carcass performance of broiler chickens. Tropical Animal Health and Production, 51, 2219–2225.

Mallo, J. J., Gracia, M. I., Honrubia, M. P., & Lazaro, R. (2017). Effect of dietary probiotics on growth performance and ammonia emissions in broilers. Livestock Science, 202, 58–62.

Mei, Y.-X., Dai, X.-Y., Yang, W., & Xu, X.-W., Liang, Y.-X. (2015). Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum. International Journal of Biological Macromolecules, 77, 330–335.

Michel, M. A., Revidatti, F. A., Fernández, R. J., Sindik, M. L., Sanz, P., Hernandez-Velasco, X., Latorre, J. D., Hargis, B. M., & Tellez-Isaias, G. (2019). Combination of a Lactobacillus-based probiotic and organic acids decrease egg to chick weight loss and reduce Salmonella spp. counts in the litter of commercial broiler breeders. Food and Nutrition Sciences, 10, 1011–1020.

Mulhausen, J. R., McJilton, C. E., Redig, P. T., & Janni, K. A. (1987). Aspergillus and other human respiratory disease agents in turkey confinement houses. American Industrial Hygiene Association Journal, 48, 894–899.

Niu, S., Yang, L., Zuo, H., Zheng, J., Weng, S., He, J., & Xu, X. (2018). A chitinase from pacific white shrimp (Litopenaeus vannamei) involved in immune regulation. Developmental and Comparative Immunology, 85, 161–169.

O’Connor, A. M., Auvermann, B., Bickett-Weddle, D., Kirkhorn, S., Sargeant, J. M., Rameriez, A., & Von Essen, S. G. (2010). The association between proximity to animal feeding operations and community health: A systematic review. PLoS ONE, 5, e9530.

O’Connor, A. M., Auvermann, B., Dzikamunhenga, R. S., Glanville, J. M., Higgins, J. P. T., Kirychuk, S. P., Sargeant, J. M., Totton, S. C., Wood, H., & Von Essen, S. G. (2017). Updated systematic reviews: Associations between proximity to animal feeding operations and health of individuals in nearby communities. Systematic Reviews, 6, 86.

O’Neill, D. H., & Phillips, V. R. (1992). A review of the control of odour nuisance from livestock buildings: Part III, properties of the odorous substances which have been identified in livestock wastes or in the air around them. Journal of Agricultural Engineering Research, 53, 23–50.

Ouwehand, A. C., Vesterlund, S., Salminen, S., & Holst, R. (2002). Probiotic and other functional microbes: From markets to mechanisms. Gut Microbes, 3(3), 201–207.

Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627–631.

Patterson, J. A., & Lorenz, F. A. (2016). Probiotic regulation and application in animal feed. Journal of Animal Science, 94(S2), 76–85.

Rahman, H., Hjeljord, L. G., Aam, B. B., Sørlie, M., & Tronsmo, A. (2014). Antifungal effect of chitooligosaccharides with different degrees of polymerization. European Journal of Plant Pathology, 141, 147–158.

Sánchez, Á., Mengíbar, M., Rivera-Rodríguez, G., Moerchbacher, B., Acosta, N., & Heras, A. (2017). The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides. Carbohydrate Polymers, 157, 251–257.

Schiffman, S. S., Auvermann, B. W., & Bottcher, R. W. (2006). Health effects of aerial emissions from animal production and waste management systems. In J. M. Rice, D. F. Caldwell, & F. J. Humenik (Eds.), Animal agriculture and the environment: National Center for Manure and Animal Waste Management White Papers (pp. 225–262). ASABE.

Schiffman, S. S., Bennett, J. L., & Raymer, J. H. (2001). Quantification of odors and odorants from swine operations in North Carolina. Agricultural and Forest Meteorology, 108, 213–240.

 Song, J., Xiao, K., Ke, Y. L., Jiao, L. F., Hu, C. H., & Kim, S. W. (2015). Dietary probiotics improve intestinal health and reduce ammonia emissions in broilers. Animal Science Journal, 86(5), 585–593.

Sweeten, J. M., Jacobson, L. D., Heber, A. J., Schmidt, D. R., Lorimor, J. C., Westerman, P. W., Miner, J. R., Zhang, R. H., Williams, C. M., & Auvermann, B. W. (2006). Odor mitigation for concentrated animal feeding operations: White paper and recommendations. In J. M. Rice, D. F. Caldwell, & F. J. Humenik (Eds.), Animal agriculture and the environment: National Center for Manure and Animal Waste Management White Papers (pp. 721–758). ASABE.

Tabata, E., Kashimura, A., Kikuchi, A., Masuda, H., Miyahara, R., Hiruma, Y., Wakita, S., Ohno, M., Sakaguchi, M., Sugahara, Y., et al. (2018). Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Scientific Reports, 8, 1–11.

Van Der Hoeven-Hangoor, E., Van De Linde, I. B., Paton, J. C., & Veldman, A. (2014). Probiotics reduce fecal ammonia emissions in poultry production. Applied and Environmental Microbiology, 80(4), 1350–1357.

Wang, S., Zhang, H., Wang, H., & Qin, G. (2017). Probiotic supplementation reduces odor emissions from broiler litter. Journal of Environmental Science and Health, 52(9), 722–730.

Zahn, J. A., DiSpirito, A. A., Do, Y. S., Brooks, B. E., Cooper, E. E., & Hatfield, J. L. (2001). Correlation of human olfactometry responses to airborne concentrations of malodorous volatile organic compounds emitted from swine effluent. Journal of Environmental Quality, 30, 624–634.

Zhao, P. Y., Kim, I. H., & Mateos, G. G. (2016). Effects of probiotics on growth performance, gut health, and fecal gas emission in poultry. Journal of Poultry Science, 53(1), 1–9.

Zhao, Y., Xin, X., Shepherd, T. A., Hayes, M. D., & Stinn, J. P. (2013). Thermal environment, ammonia concentrations, and ammonia emissions of aviary houses with white laying hens. Transactions of the ASABE, 56, 1145–1156.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
78
View
0
Share