Biodegradation: Microbial Mechanisms, Environmental Significance, and Innovations in Sustainable Waste Management
Afnan Esam Adnan 1*, Wisam Malik Dawood 1
Microbial Bioactives 8(1) 1-8 https://doi.org/10.25163/microbbioacts.8110460
Submitted: 03 April 2025 Revised: 03 June 2025 Published: 11 June 2025
This study highlights biodegradation’s vital role in sustaining ecosystems, recycling nutrients, reducing pollution, and promoting environmental sustainability amid growing industrial waste challenges.
Abstract
Biodegradation is a cornerstone of ecological balance, governing the natural breakdown of organic materials and facilitating nutrient cycling across ecosystems. This review explores the microbial foundations, environmental importance, and emerging innovations that define the biodegradation process. The study begins by outlining the roles of bacteria and fungi in decomposing complex organic compounds into simpler, reusable forms. Through both aerobic and anaerobic pathways, these microorganisms transform organic waste, supporting soil fertility and mitigating waste accumulation. Methodologically, this work synthesizes recent research findings to examine how environmental factors such as temperature, pH, moisture, and microbial diversity regulate degradation efficiency. The results highlight that while natural organic matter undergoes rapid decomposition, persistent synthetic pollutants—particularly plastics and petroleum derivatives—remain resistant to microbial action, posing severe ecological threats. Recent advancements in bioremediation and microbial genetic engineering, however, demonstrate promising potential to enhance pollutant degradation and restore contaminated environments. The review concludes that biodegradation extends far beyond waste removal; it underpins agricultural productivity, improves water quality, and contributes to climate regulation. A deeper mechanistic understanding and application of microbial biodegradation processes are thus pivotal for developing sustainable waste management strategies and addressing global environmental challenges.
Keywords: Biodegradation, microbial decomposition, nutrient cycling, bioremediation, environmental sustainability
References
Ågren, G. I., & Bossatta, E. (1996). Quality: A bridge between theory and experiment in soil organic matter experiments. Oikos, 76(3), 522–528.
Alphei, J., Bonkowski, M., & Scheu, S. (1996). Protozoa, nematode and lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia, 106(1), 111–126.
Amlinger, F., Peyr, S., & Cuhls, C. (2002). Umweltrelevanz der Hausgartenkompostierung – Klimarelevante Gasemissionen, flüssige Emissionen, Massenbilanz, Hygienisierungsleistung.
Amlinger, F., Peyr, S., Geszti, J., Dreher, P., Weinfurtner, K., & Nortcliff, S. (2008). Greenhouse gas emissions from composting and mechanical biological treatment. Waste Management & Research, 26(1), 47–60.
Andersen, J. K., Boldrin, A., Christensen, T. H., & Scheutz, C. (2010). Mass balances and life-cycle inventory for a garden waste windrow composting plant (Aarhus, Denmark). Waste Management & Research, 28(11), 1010–1020.
Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2000). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: Thermal, mechanical properties and biodegradation behaviour. Journal of Materials Science, 35(4), 829–836.
Baldock, J. A., Currie, G. J., & Oades, J. M. (1991). Organic matter as seen by solid state 13C NMR and pyrolysis tandem mass spectrometry. In W. S. Wilson (Ed.), Advances in soil organic matter research: The impact on agriculture and the environment (pp. 45–60). Royal Society of Chemistry.
Barraclough, D. (1997). The direct or MIT route for nitrogen immobilization: A 15N mirror image study with leucine and glycine. Soil Biology and Biochemistry, 29(1), 101–108.
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245–248.
Birch, H. F. (1957). The effect of drying on humus decomposition and nitrogen availability. Plant and Soil, 10(1), 9–31.
Blok, C., Wever, G., & van Os, E. (2007). Trends in rooting media in Dutch horticulture during the period 2001–2005: The new growing media project. Acta Horticulturae, 819, 47–58.
Boldrin, A., Andersen, J. K., Møller, J., Christensen, T. H., & Favoino, E. (2009). Composting and compost utilization: Accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27(8), 800–812.
Bouwman, L. F., Boumans, L. J. M., & Batjes, N. H. (2002). Modeling global annual N2O and NO emissions from fertilised fields. Global Biogeochemical Cycles, 16(4), 1080.
Brinkmann, A. J. F., et al. (2000). Herziening levenscyclusanalyse voor GFT-afval. Report for Vereniging Afvalbedrijven.
Campbell, C. A., Paul, E. A., Rennie, D. A., & McCallum, K. J. (1967). Applicability of the carbon-dating method of analysis to soil humus studies. Soil Science, 104(3), 217–224.
Carter, M. R. (2001). Organic matter and sustainability. In R. M. Rees, B. C. Ball, C. D. Campbell, & C. A. Watson (Eds.), Sustainable management of soil organic matter (pp. 9–22). CABI Publishing.
Chapman, S. J., & Gray, T. R. G. (1981). Endogenous metabolism and macromolecular composition of Arthrobacter globiformis. Soil Biology and Biochemistry, 13(1), 11–18.
Clement, C. R., & Williams, T. E. (1962). An incubation technique for assaying the nitrogen status of soils newly ploughed from leys. Journal of Soil Science, 13(1), 82–91.
Cooper, G. S., & Smith, R. (1963). Sequence and products formed during denitrification. Soil Science Society of America Proceedings, 27(6), 659–662.
Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305.
Coûteaux, M.-M., Bottner, P., & Berg, B. (1995). Litter decomposition, climate and litter quality. Trends in Ecology & Evolution, 10(2), 63–66.
De Wilde, B., & De Baere, L. (1998). Prerequisites for biodegradable plastic materials for acceptance in real-life composting plants and technical aspects. Polymer Degradation and Stability, 59(1–3), 3–7.
Dickinson, C. H., Underhay, V. X. H., & Ross, V. (1981). Effect of season, soil fauna and water content on the decomposition of cattle dung pats. New Phytologist, 81(1), 129–141.
Dungait, J. A. J., & Bol, R. (2005). Quantification of dung carbon incorporation in a temperate grassland soil following spring application using bulk stable carbon isotope determinations. Isotopes in Environmental and Health Studies, 41(1), 3–11.
Dungait, J. A. J., Bol, R., Bull, I. D., & Evershed, R. P. (2009). Tracking the fate of dung-derived carbohydrates in a temperate grassland soil using compound-specific stable isotope analysis. Organic Geochemistry, 40(10), 1210–1218.
Dungait, J. A. J., Bol, R., Lopez-Capel, E., Bull, I. D., Chadwick, D., Amelung, W., Granger, S. J., Manning, D. C., & Evershed, R. P. (2010). Applications of stable isotope ratio mass spectrometry in cattle dung carbon cycling studies. Rapid Communications in Mass Spectrometry, 24(4), 495–500.
Dungait, J. A. J., Briones, M. J. I., Bol, R., & Evershed, R. P. (2008). Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid δ13C values determined by gas chromatography–combustion–isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 22(11), 1643–1652.
Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N2O production and consumption in soil. In M. O. Andreae & D. S. Schimel (Eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp. 7–21). Wiley.
Gregorich, E. G., Beare, M. H., Stoklas, U., & St-Georges, P. (2003). Biodegradability of soluble organic matter in maize-cropped soils. Geoderma, 113(3–4), 237–252.
Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147–157.
Kijchavengkul, T., Auras, R., Rubino, M., Selke, S., Ngouajio, M., & Fernandez, R. T. (2008). Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II. Laboratory simulated conditions. Chemosphere, 71(9), 1607–1616.
Pagga, U., Beimborn, D. B., & Becker, C. (1995). Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere, 31(4), 4475–4487.*
Ramirez, C. A., Worrell, E., & Price, L. (2006). Feeding fossil fuels to the soil. Resources, Conservation and Recycling, 47(4), 339–356.
Witt, U., Einig, T., Yamamoto, M., Kleeberg, I., Deckwer, W. D., & Müller, R.-J. (2001). Biodegradation of aliphatic–aromatic copolyesters: Evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere, 44(2), 289–299.
View Dimensions
View Altmetric
Save
Citation
View
Share