Agriculture and food sciences | Online ISSN: 3066-3407
REVIEWS   (Open Access)

Microbial Biotechnology for Soil Health and Plant Nutrition: Mechanisms and Future Prospects

Hina Fatima1, Muhammad Anas Bin Abdul Qadeer1, Mujeeb Ur Rahman Khan2, Muhammad Sajad1*, Muhammad Ali Kharal3, Sidra Anam4, Muhammad Aizaz5, Fayyaz Hussain5

+ Author Affiliations

Applied Agriculture Sciences 3(1) 1-15 https://doi.org/10.25163/agriculture.3110307

Submitted: 29 June 2025  Revised: 05 August 2026  Published: 06 August 2025 

Microbial biotechnology strengthens soil health and plant nutrition by utilizing beneficial microbes, promoting sustainability, reducing chemical inputs, and enhancing crop resilience.

Abstract


Microbial biotechnology is emerging as a transformative solution for restoring soil health and promoting sustainable agriculture amid escalating climatical challenges. This review explores the integral roles of beneficial microbes, such as nitrogen-fixing bacteria, phosphate- and potassium-solubilizing microorganisms, mycorrhizal fungi, and plant growth-promoting rhizobacteria, in enhancing nutrient cycling, soil fertility, and crop productivity. The microbial interactions in the rhizosphere that promote nutrient uptake, inhibit soil-borne diseases, and increase plant resistance to abiotic stress are disscussed. The review details how microbial consortia, microbial enzymes, and bioinoculants influence soil structure, water retention, and humus formation are contributing to improved soil functionality. It also highlights microbial biofertilizers’ application methods, including seed coating and foliar sprays, which reduce dependency on chemical inputs and mitigate environmental degradation. Advanced techniques such as bioremediation, metagenomics, and synthetic biology offer promising avenues for rehabilitating polluted soils and designing crop-specific microbial formulations. Despite proven benefits, field-level challenges including strain viability, environmental adaptability, and regulatory hurdles hinder wide-scale adoption. The review addresses these constraints and suggests solutions through formulation technologies, policy reforms, and farmer education. Future perspectives integrate microbial biotechnology with AI-driven precision agriculture, genome editing tools like CRISPR, and smart delivery systems for enhancing field performance. Collectively, microbial biotechnology stands as a pillar for next-generation agriculture by improving soil health, fostering ecological balance, and enabling food security in a climate-resilient manner.

Keywords: Soil, Plant growth, Microbial biotechnology, Plant nutrition, Sustainable agriculture.

References


Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929.

Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Callaway, R. M. (2004). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 55, 233–266.

Baldwin, D. S., Rees, G. N., & Pinder, A. (1996). Bioremediation of petroleum-contaminated soil using mycorrhizal fungi. Environmental Toxicology and Chemistry, 15(2), 200–210.

Bashan, Y., de-Bashan, L. E., & Prabhu, S. R. (2014). Microbial biotechnology: Fundamentals of applied microbiology. Elsevier.

Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives. Plant and Soil, 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x

Basu, S., Kumar, G., & Choudhary, A. K. (2021). Role of plant growth-promoting rhizobacteria in sustainable agriculture. Microbiological Research, 250, 126817.

Basu, S., Kumar, G., Chhabra, S., & Prasad, R. (2021). Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In New and future developments in microbial biotechnology and bioengineering (pp. 149–157). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780444643254000134

Beck, D. A. C., Broughton, W. J., & Stougaard, J. (1997). Legume nodulation and nitrogen fixation: The role of the plant, the bacterium, and the soil environment. Soil Biology and Biochemistry, 29(7), 1111–1118.

Benmrid, B., Ghoulam, C., Zeroual, Y., Kouisni, L., & Bargaz, A. (2023). Bioinoculants as a means of increasing crop tolerance to drought and phosphorus deficiency in legume-cereal intercropping systems. Communications Biology, 6, 1016.

Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

Chakraborty, D., Bhowmik, S., Ghosh, R., & Haldar, M. (2021). Genetic engineering of soil microbes for agricultural benefits. Biotechnology Advances, 46, 107696.

Chen, L., & Liu, Y. (2024). The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology, 13(2), 95. https://doi.org/10.3390/biology13020095

Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al-Ouqaili, M. T. S., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36(9), e24655. https://doi.org/10.1002/jcla.24655

Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial applications. Frontiers in Microbiology, 10, 2886.

Crystal-Ornelas, R., Thapa, R., & Tully, K. L. (2021). Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agriculture, Ecosystems & Environment, 312, 107356. https://doi.org/10.1016/j.agee.2021.107356

Devi, R., Alsaffar, M. F., AL-Taey, D. K. A., Kumar, S., Negi, R., Sharma, B., Kaur, T., Rustagi, S., Kour, D., Yadav, A. N., & Ahluwalia, A. S. (2024). Synergistic effect of minerals solubilizing and siderophores producing bacteria as different microbial consortium for growth and nutrient uptake of oats (Avena sativa L.). Vegetos, 37(5), 1863–1875. https://doi.org/10.1007/s42535-024-00922-3

Dilworth, M. J. (1993). Nitrogen fixation by free-living bacteria. Plant and Soil, 157(2), 191–200.

Elazzazy, A. M., Baeshen, M. N., Alasmi, K. M., Alqurashi, S. I., Desouky, S. E., & Khattab, S. M. (2025). Where biology meets engineering: Scaling up microbial nutraceuticals to bridge nutrition, therapeutics, and global impact. Microorganisms, 13(3), 566. https://doi.org/10.3390/microorganisms13030566

Fendrik, S., Munoz, M. E., & Restrepo, S. (2014). Biofertilizers in agriculture: Benefits and challenges. Agricultural Systems, 121, 1–13.

Ferreira, F. V., & Musumeci, M. A. (2021). Trichoderma as biological control agent: Scope and prospects to improve efficacy. World Journal of Microbiology and Biotechnology, 37(5), 79. https://doi.org/10.1007/s11274-021-03058-7

Fierer, N. (2019). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 17(3), 133–135.

Gadd, G. M. (2001). Fungal involvement in bioremediation. Journal of Chemical Technology & Biotechnology, 76(4), 426–431. https://doi.org/10.1002/jctb.392

Gianinazzi, S., Gollotte, A., Bécard, G., & Redecker, D. (2010). Agroecology, the key role of mycorrhizal fungi. Microbial Biotechnology, 3(2), 296–303.

Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientia Agricola, 69(5), 267–277.

Glick, B. R. (2018). Beneficial plant-bacterial interactions. Springer.

Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology, 3(4), 307–319. https://doi.org/10.1038/nrmicro1129

Hartmann, M., & Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1), 4–18.

Hassan, S. E., Tan, G. Y., & de-Miguel, M. L. (2017). The role of microorganisms in the nitrogen cycle. Microorganisms, 5(4), 58.

Hassett, J. R., Snyder, M. J., & Post, W. H. (2017). Fungal roles in soil aggregation and fertility. Soil Biology and Biochemistry, 112, 48–56.

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Frontiers in Plant Science, 8, 1617. https://doi.org/10.3389/fpls.2017.01617

Kalachova, T., Jindrichová, B., Burketová, L., Monard, C., Blouin, M., Jacquiod, S., Ruelland, E., & Puga-Freitas, R. (2023). Controlled natural selection of soil microbiome through plant-soil feedback confers resistance to a foliar pathogen. Plant and Soil, 485(1–2), 181–195. https://doi.org/10.1007/s11104-022-05597-w

Kant, R., Shukla, D. R., & Mandal, S. (2025). Nanocarriers for delivering plant growth promoting microorganisms. In Nanocarriers in Plant Science and Agriculture (pp. 235–272). Elsevier.

Karvinen, P., Lassi, U., & Puhakka, J. A. (2009). Biotechnology and bioenergy: Challenges in scaling up. Biotechnology Advances, 27(3), 302–311.

Khan, A., Singh, A. V., Gautam, S. S., Agarwal, A., Punetha, A., Upadhayay, V. K., Kukreti, B., Bundela, V., Jugran, A. K., & Goel, R. (2023). Microbial bioformulation: A microbial assisted biostimulating fertilization technique for sustainable agriculture. Frontiers in Plant Science, 14, 1270039. https://doi.org/10.3389/fpls.2023.1270039

Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agronomy for Sustainable Development, 27(1), 29–43. https://doi.org/10.1051/agro:2006011

Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1980). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 1(3), 133–137.

Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1264. https://doi.org/10.1094/PHYTO.2004.94.11.1259

Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2), 139–162.

Koza, N. A., Adedayo, A. A., Babalola, O. O., & Kappo, A. P. (2022). Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms, 10(8), 1528.

Kumar, P., & Singh, R. P. (2021). Microbial diversity and multifunctional microbial biostimulants for agricultural sustainability. In P. Kumar & R. P. Singh (Eds.), Climate resilience and environmental sustainability approaches (pp. 141–184). Springer Singapore. https://doi.org/10.1007/978-981-16-0902-2_9

Kumar, V., Gupta, A., & Chauhan, H. S. (2023). Role of microbial biotechnology in enhancing soil fertility and climate-resilient agriculture. Journal of Soil Science and Plant Nutrition, 23(3), 215–227.

Kumari, A., Dash, M., Singh, S. K., Jagadesh, M., Mathpal, B., Mishra, P. K., Pandey, S. K., & Verma, K. K. (2023). Soil microbes: A natural solution for mitigating the impact of climate change. Environmental Monitoring and Assessment, 195(12), 1436. https://doi.org/10.1007/s10661-023-11988-y

Kushwaha, A., Tripathi, S., & Verma, J. P. (2022). Microbial inoculants: Future prospects in soil health management. Journal of Microbial & Biochemical Technology, 14(6), 1–9.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396

Lal, R. (2015). Restoring soil quality to mitigate soil degradation. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (Vol. 16, pp. 1–30). Springer.

Li, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.-L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375

Liu, D., Bhople, P., Keiblinger, K. M., Wang, B., An, S., Yang, N., Chater, C. C., & Yu, F. (2021). Soil rehabilitation promotes resilient microbiome with enriched keystone taxa than agricultural infestation in barren soils on the Loess plateau. Biology, 10(12), 1261. https://doi.org/10.3390/biology10121261

Liu, H., Lu, X., Li, Z., Tian, C., & Song, J. (2021). The role of root-associated microbes in growth stimulation of plants under saline conditions. Land Degradation & Development, 32(13), 3471–3486. https://doi.org/10.1002/ldr.3955

Liu, P., Wen, S., Zhu, S., Hu, X., & Wang, Y. (2025). Microbial degradation of soil organic pollutants: Mechanisms, challenges, and advances in forest ecosystem management. Processes, 13(3), 916. https://doi.org/10.3390/pr13030916

Liu, W., Xu, Q., & Yang, L. (2016). Microbial diversity in the rhizosphere and its role in soil health. Microbial Ecology in Sustainable Agroecosystems, 9(1), 25–44.

Liu, X., Chen, H., & Zheng, Y. (2006). Potassium-solubilizing bacteria and their application in soil. Soil Biology and Biochemistry, 38(9), 2389–2396. https://doi.org/10.1016/j.soilbio.2006.03.012

Liu, X., Le Roux, X., & Salles, J. F. (2022). The legacy of microbial inoculants in agroecosystems and potential for

Ma, W., Tang, S., Dengzeng, Z., Zhang, D., Zhang, T., & Ma, X. (2022). Root exudates contribute to belowground ecosystem hotspots: A review. Frontiers in Microbiology, 13, 937940. https://doi.org/10.3389/fmicb.2022.937940

Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilizers. Applied Microbiology and Biotechnology, 98(15), 6599–6607. https://doi.org/10.1007/s00253-014-5828-y

Mao, X., Yang, Y., Guan, P., Geng, L., Ma, L., Di, H., Liu, W., & Li, B. (2022). Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicology and Environmental Safety, 239, 113616. https://doi.org/10.1016/j.ecoenv.2022.113616

Massa, F., Defez, R., & Bianco, C. (2022). Exploitation of plant growth promoting bacteria for sustainable agriculture: Hierarchical approach to link laboratory and field experiments. Microorganisms, 10(5), 865. https://doi.org/10.3390/microorganisms10050865

Mawarda, P. C., Mallon, C. A., Le Roux, X., Van Elsas, J. D., & Salles, J. F. (2022). Interactions between bacterial inoculants and native soil bacterial community: The case of spore-forming Bacillus spp. FEMS Microbiology Ecology, 98(12), fiac127. https://doi.org/10.1093/femsec/fiac127

Mehmood, A., Mustafa, A., & Ahmad, K. S. (2025). Nanocarriers for Delivering Biostimulants in Plants: Mechanisms and Applications. In Nanocarriers in Plant Science and Agriculture (pp. 191–206). IGI Global Scientific Publishing. https://www.igi-global.com/chapter/nanocarriers-for-delivering-biostimulants-in-plants/381221

Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant-associated microbes for agriculture. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028

Minchev, Z., Kostenko, O., Soler, R., & Pozo, M. J. (2021). Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Frontiers in Plant Science, 12, 756368. https://doi.org/10.3389/fpls.2021.756368

Nakamura, K., Itoh, H., & Inui, M. (2009). Microbial biotechnology: Applications in energy production. Applied Microbiology and Biotechnology, 82(2), 211–219. https://doi.org/10.1007/s00253-008-1823-5

Nerling, D., Castoldi, C. T., & Ehrhardt-Brocardo, N. C. M. (2022). The Role of PGPR-Polar Metabolites, Metal-Chelator Compounds and Antibiotics on Plant Growth. In R. Z. Sayyed & V. G. Uarrota (Eds.), Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion (pp. 77–93). Springer International Publishing. https://doi.org/10.1007/978-3-031-07559-9_5

Nivethadevi, P., Swaminathan, C., & Kannan, P. (2021). Soil organic matter decomposition—Roles, factors and mechanisms. In S. P. Sukul (Ed.), Latest trends in soil sciences (Vol. 1, pp. 61–78). Integrated Publications.

Nosrati, R., Owlia, P., Saderi, H., Rasooli, I., & Malboobi, M. A. (2014). Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iranian Journal of Microbiology, 6(4), 285.

Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth-promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9

Pacios-Michelena, S., Aguilar González, C. N., Alvarez-Perez, O. B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J. A., Govea Salas, M., & Ilyina, A. (2021). Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Frontiers in Sustainable Food Systems, 5, 696518. https://doi.org/10.3389/fsufs.2021.696518

Pallucchini, M. (2023). An investigation into the mechanisms underlying the plant growth promoting properties of G. diazotrophicus [PhD thesis, University of Nottingham]. ePrints Nottingham. http://eprints.nottingham.ac.uk/77278/

Philippot, L., Griffiths, B. S., & Langenheder, S. (2021). Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews, 85(2), e00026-20. https://doi.org/10.1128/mmbr.00026-20

Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7(2), 229–252. https://doi.org/10.1007/s10668-005-7314-2

Pot, V., Portell, X., Otten, W., Garnier, P., Monga, O., & Baveye, P. C. (2022). Understanding the joint impacts of soil architecture and microbial dynamics on soil functions: Insights derived from microscale models. European Journal of Soil Science, 73(3), e13256. https://doi.org/10.1111/ejss.13256

Poveda, J. (2021). Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control, 159, 104634. https://doi.org/10.1016/j.biocontrol.2021.104634

Rai, M. (2008). Microbial fertilizers. In M. Rai (Ed.), Microbial Biotechnology (pp. 161–172). Springer.

Ramos, J. L., O'Connor, S. M., & Selenska-Pobell, S. (2004). Bioremediation of contaminated environments. Environmental Toxicology and Chemistry, 23(5), 1003–1015.

Rao, Y., Deng, J., Zhang, C., Song, Y., & Liu, L. (2025). Probiotics encapsulated by calcium pectin/chitosan–calcium pectin/sodium alginate–pectin–whey through biofilm-based microencapsulation strategy and their preventive effects on ulcerative colitis. Food Hydrocolloids, 158, 110501. https://doi.org/10.1016/j.foodhyd.2024.110501

Rathore, M., Patel, M. S., & Yadav, S. (2021). Bioremediation of agricultural soils using microbial biotechnology. Environmental Science and Pollution Research, 28, 30965–30980.

Reddy, G. P., Kumar, V., & Patil, J. (2012). Microbial biotechnology in agriculture: A critical review. Applied Biochemistry and Biotechnology, 168(7), 1583–1593.

Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability: Update on microbial phosphorus. Plant Physiology, 156(3), 989–996. https://doi.org/10.1104/pp.111.175448

Rivette, M. F., & Wilke, M. L. (2005). Bioethics and the role of microorganisms in biotechnology. Nature Biotechnology, 23(10), 1245–1251.

Rout, T., Rout, S., Kpeno, A., Nanda, B., Kar, D., & Kuanar, A. (2025). Bioremediation approaches for soil and aquatic environmental restoration to revive ecosystems. In Environmental science and engineering (pp. 123–147). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-77884-1_6

Schroeder, K., Fehrmann, H., & Jochmann, M. (2016). Role of soil microorganisms in sustainable agriculture. Soil Biology and Biochemistry, 95, 15–23. https://doi.org/10.1016/j.soilbio.2016.01.018

Schwyn, B., & Neilands, J. B. (1987). Siderophores: Their biochemistry and possible roles in the rhizosphere. Plant and Soil, 100(3), 377–384.

Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon, 9(6). https://www.cell.com/heliyon/fulltext/S2405-8440(23)03341-8

Sharma, P., Gupta, R., & Bhatia, R. (2011). Production of microbial biofertilizers: Economics and scale-up considerations. Biotechnology Advances, 29(1), 1–12.

Sharma, R., Sindhu, S. S., & Glick, B. R. (2024). Potassium Solubilizing Microorganisms as Potential Biofertilizer: A Sustainable Climate-Resilient Approach to Improve Soil Fertility and Crop Production in Agriculture. Journal of Plant Growth Regulation, 43(8), 2503–2535. https://doi.org/10.1007/s00344-024-11297-9

Sharma, U. C., Datta, M., & Sharma, V. (2022). Soil Microbes and Biofertilizers. In U. C. Sharma, M. Datta, & V. Sharma, Soils in the Hindu Kush Himalayas (pp. 117–144). Springer International Publishing. https://doi.org/10.1007/978-3-031-11458-8_5

Singh, B. K., & Glick, B. R. (2015). The use of plant growth-promoting bacteria to enhance plant growth and soil health. FEMS Microbiology Ecology, 92(7), fiw119.

Singh, J. S., Pandey, V. C., & Singh, D. P. (2020). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 295, 106891.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). Academic Press.

Steinberger, Y., Dimentman, C., & Waisel, Y. (2005). The role of microbial communities in soil restoration. Soil Biology and Biochemistry, 37(8), 1377–1383.

Sulaiman, M. A., & Bello, S. K. (2024). Biological control of soil-borne pathogens in arid lands: A review. Journal of Plant Diseases and Protection, 131(2), 293–313. https://doi.org/10.1007/s41348-023-00824-7

Tariq, M., Rehman, A., & Iqbal, M. (2022). Microbial consortia for enhancing soil fertility and plant growth: The future of precision agriculture. Agronomy, 12(5), 1177.

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant growth-promoting soil bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074

Vance, E. D., DeLuca, T. H., & Halverson, H. G. (2003). The role of microorganisms in soil remediation. Environmental Science & Technology, 37(9), 2134–2140.

Vassilev, N., Vassileva, M., & Nikolaeva, I. (2017). Microbial biofertilizers: A sustainable alternative for enhancing soil fertility and plant productivity. Applied Soil Ecology, 123, 106–113.

Velloso, C. C., Borges, R., Badino, A. C., Oliveira-Paiva, C. A., Ribeiro, C., & Farinas, C. S. (2024). Modulation of starch-based film properties for encapsulation of microbial inoculant. International Journal of Biological Macromolecules, 283, 137605.

Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893

Vessey, J. K. (2022). Role of biofertilizers in plant nutrition and soil health. Soil Biology and Biochemistry, 171, 108737.

Vrábl, D., Chamrádová, K., Smutná, K., Koutník, I., Rusín, J., Repecká, L., Gavlová, A., Navrátil, M., Chalupa, R., & Tenklová, B. (2025). Composting of waste biomass into substrates with enhanced humic acid content and optimized water holding capacity. Journal of Environmental Chemical Engineering, 117217.

Wang, Y., Wang, S., Yan, X., Gao, S., Man, T., Yang, Z., Ren, L., & Wang, P. (2022). Preparation of liquid bacteria fertilizer with phosphate-solubilizing bacteria cultured by food wastewater and the promotion on the soil fertility and plants biomass. Journal of Cleaner Production, 370, 133328.

Wani, A. K., Rahayu, F., Alkahtani, A. M., Alreshidi, M. A., Yadav, K. K., Fauziah, L., Murianingrum, M., Akhtar, N., Mufidah, E., & Rahayu, D. M. (2024). Metagenomic profiling of rhizosphere microbiota: Unraveling the plant-soil dynamics. Physiological and Molecular Plant Pathology, 133, 102381.

World Health Organization. (2004). Safety of genetically modified organisms: A risk analysis. WHO Press. https://apps.who.int/iris/handle/10665/43043

Wu, S. C., Gao, J. K., & Chang, B. S. (2021). Isolation of lindane- and endosulfan-degrading bacteria and dominance analysis in the microbial communities by culture-dependent and independent methods. Microbiological Research, 251, 126817. https://doi.org/10.1016/j.micres.2021.126817

Yadav, K. K., & Sarkar, S. S. (2019). Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. https://environmentandecology.com/wp-content/uploads/2024/11/MS15.pdf

Yahya, M., Rasul, M., Hussain, S. Z., Dilawar, A., Ullah, M., Rajput, L., Afzal, A., Asif, M., Wubet, T., & Yasmin, S. (2023). Integrated analysis of potential microbial consortia, soil nutritional status, and agro-climatic datasets to modulate P nutrient uptake and yield effectiveness of wheat under climate change resilience. Frontiers in Plant Science, 13, 1074383. https://doi.org/10.3389/fpls.2022.1074383

Yang, L., Zhang, Y., & Li, F. (Eds.). (2012). Soil enzyme activities and soil fertility dynamics. In Advances in citrus nutrition (pp. 143–156). Springer Netherlands. https://doi.org/10.1007/978-94-007-4171-3_11

Yang, X., Hu, H.-W., Yang, G.-W., Cui, Z.-L., & Chen, Y.-L. (2023). Crop rotational diversity enhances soil microbiome network complexity and multifunctionality. Geoderma, 436, 116562. https://doi.org/10.1016/j.geoderma.2023.116562

Yousuf, S., Naqash, N., & Singh, R. (2022). Nutrient cycling: An approach for environmental sustainability. In Environmental Microbiology: Advanced Research and Multidisciplinary Applications (pp. 77–104). Springer.

Yu, Y., Gui, Y., Li, Z., Jiang, C., Guo, J., & Niu, D. (2022). Induced systemic resistance for improving plant immunity by beneficial microbes. Plants, 11(3), 386. https://doi.org/10.3390/plants11030386

Zhang, Y., Li, Y., Liang, S., Zheng, W., Chen, X., Liu, J., & Wang, A. (2022). Study on the preparation and effect of tomato seedling disease biocontrol compound seed-coating agent. Life, 12(6), 849. https://doi.org/10.3390/life12060849

Zhao, L., Zhang, S., & Zhang, J. (2022). Engineering microbial communities for plant health and sustainable agriculture. Frontiers in Plant Science, 13, 823332.

Zhao, M., Yang, Y., Zhang, H., Li, Q., Zhao, X., Guo, X., Liu, W., & Wan, F. (2024). Asymmetric succession in soil microbial communities enhances the competitive advantage of invasive alien plants. Microbiome, 12(1). https://doi.org/10.1186/s40168-024-01989-5.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
86
View
0
Share