Advancing Sustainable Food Systems through Synthetic Biology: Innovations and Challenges
Maria Javed1, Muhammad Anas Bin Abdul Qadeer1, Mamar Laeeq Zia2,Rubab Arshad2, Tallat Huma3, Raja Ahmad Ali4, Muhammad Shahid Mumtaz5 ,Muhammad Sajad1*
Applied Agriculture Sciences 3 (1) 1-8 https://doi.org/10.25163/agriculture.3110310
Submitted: 30 June 2025 Revised: 07 August 2025 Published: 08 August 2025
Abstract
Synthetic biology holds great potential to overcome challenges related to global food security by providing alternative protein sources with improved environmental and nutritional value. This review explores the multifaceted contribution of synthetic biology through microbial fermentation, cellular agriculture, and genetic engineering as tools to revolutionize food production. We synthesize the current advancements, highlighting how innovations in CRISPR technology, metabolic engineering, and precision fermentation are enabling the efficient synthesis of plant-based, fungal, and lab-grown proteins, thereby reducing dependence on conventional animal farming. In addition, microbial biosensors contribute to improving food safety, increasing protein yields, and developing drought-resistant crops. Synthetic protein sources such as algae, fungi, and insect-based proteins offer sustainable alternatives, while challenges related to regulatory, economic, and consumer acceptance still exist. This review emphasizes the need for the integration of synthetic biology into existing food production systems to maximize resource usage, minimize environmental impact, and promote global food security in a sustainable manner. Future advancements in artificial intelligence-driven metabolic modeling and gene editing are anticipated to enhance the scalability and cost-effectiveness of synthetic protein production. Finally, we underscore the critical importance of addressing legal frameworks and public perception barriers to facilitate the widespread adoption of these technologies, paving the way for a more sustainable and resilient global food system.
Keywords: Synthetic biology, Alternative proteins, Genome editing, Sustainable food system
References
Andrade, L. M., Andrade, C. J., Dias, M., Guimarães, N., Alvares, J., Guimarães, L., & Matos, P. (2018). Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Processing & Technology, 6(1), 45–58. https://doi.org/10.15406/mojfpt.2018.06.00144
Andres, J., Blomeier, T., & Zurbriggen, M. D. (2019). Synthetic switches and regulatory circuits in plants. Plant Physiology, 179(3), 862–884. https://doi.org/10.1104/pp.18.01362
Aqeel-Ur-Rehman, Shaikh, Z.A., 2009. Smart agriculture. Appl. Mod. High Perform. Netw. 120–129. https://doi.org/10.2174/978160805077210901010120.
United Nations. General Assembly. (2015). Resolution was adopted by the General Assembly on 11 September 2015. United Nations.
Barrett, J., Girr, P., & Mackinder, L. C. M. (2021). Pyrenoids: CO2-fixing phase separated liquid organelles. Biochimica et Biophysica Acta - Molecular Cell Research, 1868(5), 118949. https://doi.org/10.1016/j.bbamcr.2021.118949
Benner, S. A. (1987). Redesigning life: Organic chemistry and the evolving protein. CHIMIA International Journal for Chemistry, 41(5), 142. https://doi.org/10.2533/chimia.1987.142
Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., Mathers, C., & Rivera, J. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet, 371(9608), 243–260. https://doi.org/10.1016/S0140-6736(07)61690-0
Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6(5), 33. https://doi.org/10.3390/foods6050033
Borden, J. S., & Savage, D. F. (2021). New discoveries expand possibilities for carboxysome engineering. Current Opinion in Microbiology, 61, 58–66. https://doi.org/10.1016/j.mib.2021.03.002
Boulter, D., & Croy, R. (1997). The structure and biosynthesis of legume seed storage proteins: A biological solution to the storage of nitrogen in seeds. In Advances in Botanical Research, 25 (pp. 1–84). Elsevier. https://doi.org/10.1016/s0065-2296(08)60280-3
Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431. https://doi.org/10.1016/j.foodres.2009.09.003
Brody, T. (1999). Classification of biological structure. Academic Press.
Busch, F. A. (2020). Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. The Plant Journal, 101(4), 919–939. https://doi.org/10.1111/tpj.14674
Campbell, L., Rempel, B. C., & Wanasundara, P. D. J. (2016). Canola/rapeseed protein: Future opportunities and directions—Workshop proceedings of IRC 2015. Plants, 5(2), 17. https://doi.org/10.3390/plants5020017
Carmo-Silva, E., Scales, J. C., Madgwick, P. J., & Parry, M. A. (2015). Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell & Environment, 38(9), 1817–1832. https://doi.org/10.1111/pce.12425
Chan, L. Y., Kosuri, S., & Endy, D. (2005). Refactoring bacteriophage T7. Molecular Systems Biology, 1, 2005.0018. https://doi.org/10.1038/msb4100025
Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697. https://doi.org/10.1146/annurev-arplant-050718-100049
Chen, L., Guttieres, D., Koenigsberg, A., Barone, P. W., Sinskey, A. J., & Springs, S. L. (2022). Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials, 280, 121274. https://doi.org/10.1016/j.biomaterials.2021.121274
Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, 140(2), 766–783. https://doi.org/10.1016/j.jclepro.2016.04.082
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering use CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143
Cubillos-Ruiz, A., Guo, T., Sokolovska, A., Miller, P. F., Collins, J. J., Lu, T. K., & Lora, J. M. (2021). Engineering living therapeutics with synthetic biology. Nature Reviews Drug Discovery, 20(12), 941–960. https://doi.org/10.1038/s41573-021-00285-3
da Silva Vale, A., de Melo Pereira, G. V., Santana, L. M., de Carvalho Neto, D. P., Colonia, B. S. O., Soccol, V. T., Maske, B. L., & Soccol, C. R. (2022). Perspective on the use of synthetic biology in rudimentary food fermentations. Systems Microbiology and Biomanufacturing, 3(1), 150–165. https://doi.org/10.1007/s43393-022-00131-6
Delcour, J. A., Joye, I. J., Pareyt, B., Wilderjans, E., Brijs, K., & Lagrain, B. (2012). Wheat gluten functionality as a quality determinant in cereal-based food products. Annual Review of Food Science and Technology, 3, 469–492. https://doi.org/10.1146/annurev-food-022811-101303
Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291
Donovan, S., Mao, Y., Orr, D. J., Carmo-Silva, E., & McCormick, A. J. (2020). CRISPR-Cas9-mediated mutagenesis of the Rubisco small subunit family in Nicotiana tabacum. Frontiers in Genome Editing, 2, 605614. https://doi.org/10.3389/fgeed.2020.605614
Dossey AT, Tatum JT, McGill WL. 2016. Modern insect-based food industry: current status, insect processing technology, and recommendations moving forward. In Insects as Sustainable Food Ingredients, ed. AT Dossey, JA Morales-Ramos, MG Rojas, pp. 113–52. San Diego: Academic.
Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., & Barbas, C. F., III. (2001). Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. Journal of Biological Chemistry, 276(31), 29466–29478. https://doi.org/10.1074/jbc.M102604200
Dueber, J. E., Yeh, B. J., Chak, K., & Lim, W. A. (2003). Reprogramming control of an allosteric signaling switch through modular recombination. Science, 301(5641), 1904–1908. https://doi.org/10.1126/science.1085945
El-Metwally, S., Ouda, O. M., & Helmy, M. (2014). Next generation sequencing technologies and challenges in sequence assembly (Vol. 7). Springer Science & Business. https://books.google.com/books?hl=en&lr=&id=APG7BAAAQBAJ&oi=fnd&pg=PR5&dq=The+BUILD+process+in+involves+a+sequence+of+operations,+commencing+with+the+assembly+of+DNA+and+its+subsequent+integration+into+a+host+organism,+followed+by+the+validation+of+the+assembled+genetic+sequence+within+its+intended+genomic+context&ots=OI33k6lDzt&sig=VjwoZTn-GEpZvaQtGvvqqiLOSzY
Engineering Biology | EBRC Research Roadmap. (n.d.). Retrieved February 11, 2025, from https://roadmap.ebrc.org/2019-roadmap/ezig L, Chibani F, Chouaibi M, Dalgalarrondo M, Hessini K, et al. 2013. Pumpkin (Cucurbita maxima) seed proteins: sequential extraction processing and fraction characterization. J. Agric. Food Chem. 61:7715–21.
Finn, S. (2014). Nutrition insecurity and malnutrition in developed countries. Addressing Malnutrition to Improve Global Health; Science/AAAS: Washington, DC, USA.
Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H., Varshney, R. K., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., Hodgson, J. M., Cooper, J. W., Miller, A. J., Kunert, K., Vorster, J., Cullis, C., Ozga, J. A., Wahlqvist, M. L., Liang, Y., Shou, H., ... Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2, 16112. https://doi.org/10.1038/nplants.2016.112
Fukushima, D. (1991). Structures of plant storage proteins and their functions. Food Reviews International, 7(3), 353–381. https://doi.org/10.1080/87559129109540916
González-Pérez, S., & Vereijken, J. M. (2007). Sunflower proteins: Overview of their physicochemical, structural and functional properties. Journal of the Science of Food and Agriculture, 87(12), 2173–2191. https://doi.org/10.1002/jsfa.2971
Grossmann, L., & Weiss, J. (2021). Alternative protein sources as technofunctional food ingredients. Annual Review of Food Science and Technology, 12, 93–117. https://doi.org/10.1146/annurev-food-062520-093642
He, S., Chou, H.T., Matthies, D., Wunder, T., Meyer, M.T., Atkinson, N., MartinezSanchez, A., Jeffrey, P.D., Port, S.A., Patena, W., He, G., Chen, V.K., Hughson, F.M., McCormick, A.J., Mueller-Cajar, O., Engel, B.D., Yu, Z., Jonikas, M.C., 2020. The structural basis of Rubisco phase separation in the pyrenoid. Nat. Plants 6, 1480–1490. https://doi.org/10.1038/s41477-020-00811-y.
Henikoff, S., & Comai, L. (2003). Single-nucleotide mutations for plant functional genomics. Annual Review of Plant Biology, 54, 375–401.
Herrero, A., & Flores, E. (2019). Genetic responses to carbon and nitrogen availability in Anabaena. Environmental Microbiology, 21(1), 1–17. https://doi.org/10.1111/1462-2920.14370
Hobom, B. (1980). Genchirurgie: An der Schwelle zur Synthetischen Biologie [Gene surgery: On the threshold of synthetic biology]. Medizinische Klinik, 75(24), 834–841.
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278
Iqbal, W. A., Miller, I. G., Moore, R. L., Hope, I. J., Cowan-Turner, D., & Kapralov, M. V. (2021). Rubisco substitutions predicted to enhance crop performance through carbon uptake modelling. Journal of Experimental Botany, 72(17), 6066–6075. https://doi.org/10.1093/jxb/erab278
Jacob, L.W., 2005. From foraging to farming: explaining the neolithic revolution. J. Econ. Surv. 19, 561–586.
Janssen, F., Pauly, A., Rombouts, I., Jansens, K. J. A., Deleu, L. J., & Delcour, J. A. (2017). Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective. Comprehensive Reviews in Food Science and Food Safety, 16(1), 39–58. https://doi.org/10.1111/1541-4337.12240
Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research, 46, 101800. https://doi.org/10.1016/j.algal.2020.101800
Kim, B. F., Santo, R. E., Scatterday, A. P., Fry, J. P., Synk, C. M., Cebron, S. R., Mekonnen, M. M., Hoekstra, A. Y., de Pee, S., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 62, 101926. https://doi.org/10.1016/j.gloenvcha.2019.05.010
Klose, C., & Arendt, E. K. (2012). Proteins in oats; Their synthesis and changes during germination: A review. Critical Reviews in Food Science and Nutrition, 52(7), 629–639. https://doi.org/10.1080/10408398.2010.504902
Kumar, P., Abubakar, A. A., Verma, A. K., Umaraw, P., Ahmed, M. A., Mehta, N., Hayat, M. N., Kaka, U., & Sazili, A. Q. (2023). New insights in improving sustainability in meat production: Opportunities and challenges. Critical Reviews in Food Science and Nutrition, 63(33), 11830–11858. https://doi.org/10.1080/10408398.2022.2096562
Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2016). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147. https://doi.org/10.1080/87559129.2016.1242135
Lee ED, Aurand ER, Friedman DC; Engineering Biology Research Consortium Microbiomes Roadmapping Working Group. Engineering Microbiomes-Looking Ahead. ACS Synth Biol. 2020 Dec 18;9(12):3181-3183. doi: 10.1021/acssynbio.0c00558. PMID: 33334104.
Li, J., Zhao, H., Zheng, L., & An, W. (2021). Advances in synthetic biology and biosafety governance. Frontiers in Bioengineering and Biotechnology, 9, 598087. https://doi.org/10.3389/fbioe.2021.598087
Lian, J., HamediRad, M., Hu, S., & Zhao, H. (2017). Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 8(1), 1688. https://doi.org/10.1038/s41467-017-01695-x
Long, S. P., Marshall-Colon, A., & Zhu, X. G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56–66. https://doi.org/10.1016/j.cell.2015.03.019
Madison, S. L., & Nebenführ, A. (2013). Understanding myosin functions in plants: Are we there yet? Current Opinion in Plant Biology, 16(6), 710–717. https://doi.org/10.1016/j.pbi.2013.10.004
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826. https://doi.org/10.1126/science.1232033
Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D., & Keasling, J. D. (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 21(7), 796–802. https://doi.org/10.1038/nbt833
Meyer-Rochow, V. B., & Changkija, S. (1997). Uses of insects as human food in Papua New Guinea, Australia, and North-East India: Cross-cultural considerations and cautious conclusions. Ecology of Food and Nutrition, 36(2–4), 159–185. https://doi.org/10.1080/03670244.1997.9991513
Moura, M. A. F. E., Martins, B. A., Oliveira, G. P., & Takahashi, J. A. (2023). Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 63(31), 10691–10708. https://doi.org/10.1080/10408398.2022.2085657
Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., Croce, R., Hanson, M. R., Hibberd, J. M., Long, S. P., Moore, T. A., Moroney, J., Niyogi, K. K., Parry, M. A. J., Peralta-Yahya, P. P., Prince, R. C., Redding, K. E., Spalding, M. H., van Wijk, K. J., & Vermaas, W. F. J. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences, 112(28), 8529–8536. https://doi.org/10.1073/pnas.1424031112
Patra, P., Das, M., Kundu, P., & Ghosh, A. (2021). Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 47, 107695. https://doi.org/10.1016/j.biotechadv.2021.107695
Jeelani, P. G., Sinclair, B. J., Perinbarajan, G. K., Dutta, R. K., Shekhawat, R., Saikia, N., Chidambaram, R., & Mossa, A.-T. H. (2024). An overview on smart and active edible coatings: Safety and regulations. European Food Research and Technology, 249, 2419–2433. https://doi.org/10.1007/s00217-023-04273-2
Pham, T. T., Tran, T. T. T., Ton, N. M. N., & Le, V. V. M. (2016). Effects of pH and salt concentration on functional properties of pumpkin seed protein fractions. Journal of Food Processing and Preservation, 41(4), e13073. https://doi.org/10.1111/jfpp.13073
Price, G. D., von Caemmerer, S., Evans, J. R., Yu, J.-W., Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A., & Badger, M. R. (1994). Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 193(3), 331–340. https://doi.org/10.1007/bf00201810
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
Ralet M-C, Guéguen J. 2000. Fractionation of potato proteins: solubility, thermal coagulation and emulsifying properties. LWT Food Sci. Technol. 33:380–87.
Ramírez Rojas, A. A., Swidah, R., & Schindler, D. (2022). Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges. Frontiers in Bioengineering and Biotechnology, 10, 982975. https://doi.org/10.3389/fbioe.2022.982975
Rawls, R. L. (2000). 'Synthetic biology'makes its debut. Chemical & Engineering News, 78(17), 49-49.
Ritchie, H., Roser, M., 2020. Environmental impacts of food production. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/environment al-impacts-of-food. (Accessed 20 April 2020). Online Resource.
Roell, M. S., & Zurbriggen, M. D. (2020). The impact of synthetic biology for future agriculture and nutrition. Current Opinion in Biotechnology, 61, 102–109. https://doi.org/10.1016/j.copbio.2019.10.004
Sans, P., & Combris, P. (2015). World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Science, 109, 106–111. https://doi.org/10.1016/j.meatsci.2015.05.012
Santo, R. E., Kim, B. F., Goldman, S. E., Dutkiewicz, J., Biehl, E. M. B., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Considering plant-based meat substitutes and cell-based meats: A public health and food systems perspective. Frontiers in Sustainable Food Systems, 4, 134. https://doi.org/10.3389/fsufs.2020.00134
Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., & Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, 100520. https://doi.org/10.1016/j.gfs.2021.100520
Serrano, L. (2007). Synthetic biology: Promises and challenges. Molecular Systems Biology, 3, 158. https://doi.org/10.1038/msb4100202
Sharwood, R. E. (2017). Engineering chloroplasts to improve Rubisco catalysis: Prospects for translating improvements into food and fiber crops. New Phytologist, 213(2), 494–510. https://doi.org/10.1111/nph.14351
Shevkani, K., Singh, N., Chen, Y., Kaur, A., & Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56(6), 2787–2798. https://doi.org/10.1007/s13197-019-03723-8
Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947–958. https://doi.org/10.1093/jexbot/53.370.947
Shi, X., & Bloom, A. (2021). Photorespiration: The Futile Cycle? Plants, 10(5), 908. https://doi.org/10.3390/plants10050908
Simpson, T., Toropov, V., Balabanov, V., & Viana, F. (2008, September 10). Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Columbia, Canada. https://doi.org/10.2514/6.2008-5802
Singh, A., Meena, M., Kumar, D., Dubey, A. K., & Hassan, M. I. (2015). Structural and functional analysis of various globulin proteins from soy seed. Critical Reviews in Food Science and Nutrition, 55(11), 1491–1502. https://doi.org/10.1080/10408398.2012.700340
Soleymani, S., Naghib, S. M., & Mozafari, M. R. (2024). An overview of cultured meat and stem cell bioprinting: How to make it, challenges and prospects, environmental effects, society’s culture and the influence of religions. Journal of Agriculture and Food Research, 18, 101307. https://doi.org/10.1016/j.jafr.2024.101307
South, P. F., Cavanagh, A. P., Liu, H. W., & Ort, D. R. (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 363(6422), eaat9077. https://doi.org/10.1126/science.aat9077
Sprinzak, D., & Elowitz, M. B. (2005). Reconstruction of genetic circuits. Nature, 438(7067), 443–448. https://doi.org/10.1038/nature04335
Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X., & Church, G. (2004). Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 432(7020), 1050–1054. https://doi.org/10.1038/nature03151
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264. https://doi.org/10.1073/pnas.1116437108
Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–522. https://doi.org/10.1038/nature13959
Timm, S. (2020). The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochemical Society Transactions, 48(6), 2495–2504. https://doi.org/10.1042/BST20200055
van Huis, A. (2016). Are Edible insects the future? Proceedings of the Nutrition Society, 75(3), 294–305. https://doi.org/10.1017/S0029665116000069
Veldkamp, T., Meijer, N., Alleweldt, F., Deruytter, D., Van Campenhout, L., Gasco, L., Roos, N., Smetana, S., Fernandes, A., & van der Fels-Klerx, H. J. (2022). Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in Europe: A SUSINCHAIN perspective. Insects, 13(3), 281. https://doi.org/10.3390/insects13030281
Veraverbeke, W. S., & Delcour, J. A. (2002). Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Critical Reviews in Food Science and Nutrition, 42(3), 179–208. https://doi.org/10.1080/10408690290825510
Wang, J., Nielsen, J., & Liu, Z. (2021). Synthetic biology advanced natural product discovery. Metabolites, 11(11), 785. https://doi.org/10.3390/metabo11110785
Wiebe, M. G. (2002). Myco-protein from Fusarium venenatum: A well-established product for human consumption. Applied Microbiology and Biotechnology, 58(4), 421–427. https://doi.org/10.1007/s00253-002-0931-x
Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De Vries, W., Majele Sibanda, L., Murray, C. J. L. (2019). Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
Zhang, R., Liu, J., Chai, Z., Chen, S., Bai, Y., Zong, Y., Chen, K., Li, J., Jiang, L., & Gao, C. (2019). Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 5(5), 480–485. https://doi.org/10.1038/s41477-019-0405-0
Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J. L., & Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 36(9), 925–928. https://doi.org/10.1038/nbt.4261