Sustainable Agriculture Development: The Role of Biofertilizers in Soil Fertility and Crop Yield Improvement
Ayesha Areej1, Muhammad Usama1, Umer Zulfiqar1, Fatima Sarwar1, Maryam1, Aneela Ashiq 1*
Applied Agriculture Sciences 2(1) 1-5 https://doi.org/10.25163/agriculture.2110005
Submitted: 04 March 2024 Revised: 12 May 2024 Published: 13 May 2024
The study demonstrated sustainable agriculture by promoting biofertilizers, improving soil fertility, and reducing chemical fertilizer reliance for better crop yield.
Abstract
This review explores the role of biofertilizers, specifically focusing on phosphate-solubilizing microorganisms, nitrogen-fixing bacteria, algal biofertilizers, and fungal biofertilizers, in enhancing soil fertility and promoting sustainable agricultural practices. Biofertilizers offer a natural alternative to chemical fertilizers, improving nutrient availability and reducing environmental impacts associated with synthetic inputs. Phosphate-solubilizing microorganisms play a crucial role in mobilizing bound phosphates, making them accessible to plants, while nitrogen-fixing bacteria convert atmospheric nitrogen into forms usable by crops, significantly enhancing soil fertility. Algal biofertilizers provide essential nutrients and improve soil structure, promoting beneficial microbial activity and water retention. Furthermore, fungal biofertilizers establish symbiotic relationships with plant roots, enhancing nutrient uptake and overall plant health. Despite their benefits, challenges such as production costs, application efficiency, and the need for field-specific adaptations exist. Ongoing research is vital to optimize biofertilizer formulations and applications to address these challenges effectively. This review highlights the potential of biofertilizers to contribute to sustainable agriculture by improving crop yields, enhancing soil health, and reducing reliance on chemical fertilizers. By promoting the use of biofertilizers, farmers can adopt more environmentally friendly practices, ultimately leading to increased food security and more resilient agricultural systems. The integration of biofertilizers into existing farming practices is essential for creating sustainable and productive agricultural landscapes globally.
Keywords: Biofertilizers, Phosphate-solubilizing microorganisms, Nitrogen-fixing bacteria, Sustainable agriculture, Soil fertility
References
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, Article 628379. https://doi.org/10.3389/FMICB.2021.628379
Ali, M. A., Merzah, N. R., & Jubair, A. F. (2021). Isolation and diagnosis of pathogenic fungi associated with zucchini Cucurbita pepo roots and their bio-control. IOP Conference Series: Earth and Environmental Science, 923. doi:10.1088/1755-1315/923/1/012014
Alobwede, E. (2023, May 29). The advantages of algae as biofertilisers in agriculture. In Grantham Centre for Sustainable Futures. https://grantham.sheffield.ac.uk/journal-club-with-emanga-alobwede/
Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & EL-Shershaby, N. A. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29, 3083. doi:10.1016/j.sjbs.2022.03.020
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, Article 1068. https://doi.org/10.3389/FPLS.2019.01068
Benjamin, R. K., Blackwell, M., Chapela, I. H., Humber, R. A., Jones, K. G., Klepzig, K. D., Lichtwardt, R. W., Malloch, D., Noda, H., Roeper, R. A., & et al. (2004). Insect-and other arthropod-associated fungi. In Biodiversity of fungi: Inventory and monitoring methods (pp. 395–433). doi:10.1016/B978-012509551-8/50021-0
Bharathi, S., & Radhakrishnan, M. (2023). Symbiotic microbes from corals. In Microbial symbionts (pp. 441–456). doi:10.1016/B978-0-323-99334-0.00004-9
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key players in sustainable agriculture by improving soil fertility, plant tolerance, and crop productivity. Microbial Cell Factories, 13, Article 66. https://doi.org/10.1186/1475-2859-13-66
Bio-Fit. (n.d.). What are biofertilizers? Retrieved May 29, 2023, from https://bio-fit.eu/q8/lo1-why-biofertilizers?start=1
Biological Products Industry Alliance. (2023, May 29). History of biopesticides. https://www.bpia.org/history-of-biopesticides/
Biomcare. (n.d.). Microbiome analysis service | Research & pro services | Get quote. Retrieved May 28, 2023, from https://biomcare.com/
Britannica. (2023, May 29). Nitrogen-fixing bacteria | Definition & types. In Encyclopedia Britannica. https://www.britannica.com/science/nitrogen-fixing-bacteria
Byjus. (n.d.). Rhizobium - Role of Rhizobium bacteria in nitrogen fixation. Retrieved May 29, 2023, from https://byjus.com/biology/rhizobium/
Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: The future of food security and food safety. Microorganisms, 10, Article 1220. https://doi.org/10.3390/MICROORGANISMS10061220
Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: The future of food security and food safety. Microorganisms, 10. doi:103390/microorganisms10061220
Dwivedi, M. (2020). Gluconobacter. In Beneficial microbes in agro-ecology: Bacteria and fungi (pp. 521–544). https://doi.org/10.1016/B978-0-12-823414-3.00025-3
Gonçalves, A. L. (2021). The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Applied Sciences, 11(2), 1–21. doi:10.3390/app11020871
Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolás, C., Monte, E., & Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16, 69–80. doi:10.2436/20.1501.01.181
Hocking, M. B. (2005). Ammonia, nitric acid and their derivatives. In Handbook of Chemical Technology and Pollution Control (pp. 321–364). https://doi.org/10.1016/B978-012088796-5/50014-4
Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, Article 4917256. https://doi.org/10.1155/2019/4917256
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487. https://doi.org/10.1016/J.BCAB.2019.101487
Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10. doi:10.3390/plants10061185
Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. Journal of Biofertilizers & Biopesticides, 6. doi:10.4172/jbfbp.1000e129
Kumar, S., Diksha, Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/J.CRMICR.2021.100094
Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13, 1314. doi:10.1111/1751-7915.13517
Mahmud, A. A., Upadhyay, S. K., Srivastava, A. K., & Bhojiya, A. A. (2021). Biofertilizers: A nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063. https://doi.org/10.1016/J.CRSUST.2021.100063
Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3, 1–7. https://doi.org/10.1094/CM-2004-0301-05-RV
Online Biology Notes. (n.d.). Biofertilizer- Advantages, types, methods of application and disadvantages. Retrieved May 29, 2023, from https://www.onlinebiologynotes.com/biofertilizer-advantages-types-methods-of-application-and-disadvantages/
Pedraza, R. O., Filippone, M. P., Fontana, C., Salazar, S. M., Ramírez-Mata, A., Sierra-Cacho, D., & Baca, B. E. (2020). Azospirillum. In Beneficial microbes in agro-ecology: Bacteria and fungi (pp. 73–105). https://doi.org/10.1016/B978-0-12-823414-3.00006-X
Reddy, P. M., James, E. K., & Ladha, J. K. (2002). Nitrogen fixation in rice. In Nitrogen fixation at the millennium (pp. 421–445). doi:10.1016/B978-044450965-9/50015-X
ResearchGate. (2023, May 29). Mycorrhiza-mediated phosphorus use efficiency in plants. https://www.researchgate.net/publication/362253016_Mycorrhiza-mediated_phosphorus_use_efficiency_in_plants
Saritha, M., & Prasad Tollamadugu, N. V. K. V. (2019). The status of research and application of biofertilizers and biopesticides: Global scenario. In Recent developments in applied microbiology and biochemistry (pp. 195–207). https://doi.org/10.1016/B978-0-12-816328-3.00015-5
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, Article 587. https://doi.org/10.1186/2193-1801-2-587
Sheteiwy, M. S., Ali, D. F. I., Xiong, Y. C., Brestic, M., Skalicky, M., Hamoud, Y. A., Ulhassan, Z., Shaghaleh, H., AbdElgawad, H., & Farooq, M. (2021). Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biology, 21. doi:10.1186/s12870-021-02949-z
Singh, D. P., Singh, H. B., & Prabha, R. (2016). Microbial inoculants in sustainable agricultural productivity: Vol. 1: Research perspectives (pp. 1–343). https://doi.org/10.1007/978-81-322-2647-5/COVER
Stacey, G. (2006). The Rhizobium-legume nitrogen-fixing symbiosis. In Biology of the Nitrogen Cycle (pp. 147–163). https://doi.org/10.1016/B978-044452857-5.50011-4
Sumbul, A., Ansari, R. A., Rizvi, R., & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27, 3634–3641. https://doi.org/10.1016/J.SJBS.2020.08.004
U.S. Environmental Protection Agency. (2023, May 29). What are biopesticides? https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides
Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313. doi:10.3389/fpls.2018.00313
Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968–989. https://doi.org/10.1128/MMBR.63.4.968-989.1999
Zambrano-Mendoza, J. L., Sangoquiza-Caiza, C. A., Campaña-Cruz, D. F., & Yánez-Guzmán, C. F. (2021). Use of biofertilizers in agricultural production. Technology in Agriculture. https://doi.org/10.5772/INTECHOPEN.98264
View Dimensions
View Altmetric
Save
Citation
View
Share