Agriculture and food sciences
REVIEWS   (Open Access)

IOT Based Smart Agriculture in Bangladesh: An Overview

Syed Mosaddik Hossain Ifty 1, Md Rahatul Ashakin 2, Bayazid Hossain 3, Sadia Afrin 4, Abdus Sattar 5, Redoyan Chowdhury 6, Mazharul Islam Tusher 7, Proshanta Kumar Bhowmik 8, Md Tuhin Mia 6, Tasriqul Islam 9, Tufael 5, Atiqur Rahman Sunny 5*

+ Author Affiliations

Applied Agriculture Sciences 1(1) 1-10 https://doi.org/10.25163/agriculture.119563

Submitted: 12 March 2022  Revised: 02 February 2023  Published: 08 February 2023 

IoT-based smart agriculture can revolutionize Bangladesh's farming sector, mitigating climate risks, increasing productivity, and improving livelihoods sustainably.

Abstract


The agricultural sector plays a critical role in Bangladesh's rapid economic growth, as 50% of the population directly depends on the industry for their livelihood. This article provides an overview of the global state of IoT-based smart agriculture today, with a focus on how control activities and powering the entire cultivation and irrigation process are carried out. We also looked at the various tools and technology employed in IoT-based smart agriculture and their potential to advance Bangladesh's agricultural industry. More than 70% of the country's land is used for agricultural production. Bangladesh is regarded as a nation particularly vulnerable to climate change, with its agricultural sector frequently being devastated by natural calamities. IoT-based smart agriculture has the potential to drastically alter Bangladesh's agricultural industry by lowering risks, increasing productivity, and boosting resistance to climate change. The bulk of people working in the agricultural industry should raise their level of life by embracing the era of Internet of Things (IoT)-based smart agriculture. To do this, the electricity needed for the monitoring and management of IoT-based smart agriculture will need to be supplied by renewable energy sources. Given that agriculture plays a significant part in Bangladesh's economy and that this technology is being embraced globally in this sector, it is imperative that Bangladesh address its issues and make the necessary preparations to ensure that it is going forward in a sustainable manner.

Keywords: IoT; Smart Agriculture; Prospects; Challenges. Bangladesh.

References


Abad, E., Palacio, F., Zárate, A. G. de, Juarros, A., Gómez, J. M., & Marco, S. (2009). RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of Food Engineering, 93(4), 394–399. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2009.02.004

Abu, N. S., Bukhari, W. M., Ong, C. H., Kassim, A. M., Izzuddin, T. A., Sukhaimie, M. N., ... & Rasid, A. F. A. (2022). Internet of things applications in precision agriculture: A review. Journal of Robotics and Control (JRC), 3(3), 338-347.

Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet of Things Journal, 5(6), 4890–4899. https://doi.org/IEEE Internet of Things Journal

Alam, K., Chowdhury, M. Z. A., Jahan, N., Rahman, K., Chowdhury, R., Mia, M. T., & Mithun, M. H. (2023). Relationship between Brand Awareness and Customer Loyalty in Bangladesh: A Case Study of Fish Feed Company. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 212-222.  https://doi.org/10.60087/jklst.vol2.n3.p222

Amador, C., Emond, J.-P., & Nunes, M. C. do N. (2009). Application of RFID technologies in the temperature mapping of the pineapple supply chain. Sensing and Instrumentation for Food Quality and Safety, 3, 26–33. https://doi.org/https://link.springer.com/article/10.1007/s11694-009-9072-6

Aziz, B. (2014). A Formal Model and Analysis of the MQ Telemetry Transport Protocol. IEEE International Conference on Availability, Reliability and Security, ARES. https://doi.org/https://doi.org/10.1109/ARES.2014.15

Backman, J., Linkolehto, R., Koistinen, M., Nikander, J., Ronkainen, A., Kaivosoja, J., Suomi, P., & Pesonen, L. (2019). Cropinfra research data collection platform for ISO 11783 compatible and retrofit farm equipment. Computers and Electronics in Agriculture, 166(July), 105008. https://doi.org/10.1016/j.compag.2019.105008

Bagchi, M., Rahman, S., & Shunbo, Y. (2019). Growth in agricultural productivity and its components in Bangladeshi regions (1987-2009): An application of bootstrapped data envelopment analysis (DEA). Economies, 7(2). https://doi.org/10.3390/economies7020037

Barge, P., Gay, P., Merlino, V., & Tortia, C. (2013). Radio frequency identification technologies for livestock management and meat supply chain traceability. Canadian Journal of Animal Science, 93(1), 23–33. https://doi.org/10.4141/CJAS2012-029

Brandl, M., Posnicek, T., & Kellner, K. (2016). Position estimation of RFID-based sensors using SAW compressive receivers. Sensors and Actuators, A: Physical, 244, 277–284. https://doi.org/10.1016/j.sna.2016.04.032

Caldas, C. H., Torrent, D. G., & Haas, C. T. (2015). Using Global Positioning System to Improve Materials-Locating Processes on Industrial Projects. Journal of Construction Engineering & Management, 132(7), 741–749. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9364(2006)132:7(741)

Cao, Q., Miao, Y., Shen, J., Yuan, F., Cheng, S., & Cui, Z. (2018). Evaluating two crop circle active canopy sensors for in-season diagnosis of winter wheat nitrogen status. Agronomy, 8(10), 1–17. https://doi.org/10.3390/agronomy8100201

Catarinucci, L., Cuiñas, I., Expósito, I., Colella, R., Fernández, J. A. G., & Tarricone, L. (2011). RFID and WSNs for traceability of agricultural goods from Farm to Fork: Electromagnetic and deployment aspects on wine test-cases. IEEE International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 1–4.

ChuanHeng, S., WenYong, L., Chao, Z., Ming, L., & XingTing, Y. (2013). Anti-counterfeit system for agricultural product origin labeling based on GPS data and encrypted Chinese-sensible code. Computers and Electronics in Agriculture, 92, 82–91. https://doi.org/https://doi.org/10.1016/j.compag.2012.12.014

Eastwood, C., Klerkx, L., Ayre, M., & Dela Rue, B. (2019). Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. Journal of Agricultural and Environmental Ethics, 32(5–6), 741–768. https://doi.org/10.1007/s10806-017-9704-5

Ferdous, J., Sunny, A. R., Khan, R. S., Rahman, K., Chowdhury, R., Mia, M. Tuhin., Shiam, A. Abdullah., & Mithun, M. H. (2023). Impact of Varying Synthetic Hormone on Mystus   cavasius (Hamilton): Fertilization, Hatching, and Survival Rates. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 88-105. https://doi.org/10.60087/jklst.vol2.n3.p103

Fernández-Ahumada, L. M., Ramírez-Faz, J., Torres-Romero, M., & López-Luque, R. (2019). Proposal for the design of monitoring and operating irrigation networks based on IoT, cloud computing and free hardware technologies. Sensors (Switzerland), 19(10). https://doi.org/10.3390/s19102318

Gandino, F., Montrucchio, B., Rebaudengo, M., & Sanchez, E. R. (2007). Analysis of an RFID-based Information System for Tracking and Tracing in an Agri-Food chain. Annual RFID Eurasia, 1–6. https://doi.org/https://doi.org/10.1109/IEEECONF12651.2007

Gayathri Devi, T., Srinivasan, A., Sudha, S., & Narasimhan, D. (2019). Web enabled paddy disease detection using Compressed Sensing. Mathematical Biosciences and Engineering, 16(6), 7719–7733. https://doi.org/10.3934/mbe.2019387

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/https://doi.org/10.1016/j.future.2013.01.010

Haque, A., Islam, N., Samrat, N. H., Dey, S., & Ray, B. (2021). Smart farming through responsible leadership in Bangladesh: Possibilities, opportunities, and beyond. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084511

Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global positioning system: Theory and practice (4th ed.). Springer US.

Hu, X., & Qian, S. (2011). IOT application system with crop growth models in facility agriculture. IEEE International Conference on Computer Sciences and Convergence Information Technology (ICCIT), 129–133.

Hua, P., JiHua, W., ZhiHong, M., & YuanFang, D. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety. International Journal of Agricultural and Biological Engineering, 11(5), 35–45. https://doi.org/International Journal of Agricultural and Biological Engineering

Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A review of applications and communication technologies for internet of things (Iot) and unmanned aerial vehicle (uav) based sustainable smart farming. Sustainability, 13(4), 1821.

Jian, Z., Lu, L., WeiSong, M., Moga, L. M., & XiaoShuan, Z. (2009). Development of temperature-managed traceability system for frozen and chilled food during storage and transportation. Journal of Food, Agriculture & Environment, 7(3/4), 28–31. http://www.isfae.org/scientificjournal.php

JianPing, Q., XinTing, Y., XiaoMing, W., Li, Z., BeiLei, F., & Bin, X. (2012). A traceability system incorporating 2D barcode and RFID technology for wheat flour mills. Computers and Electronics in Agriculture, 89, 76–85. https://doi.org/https://doi.org/10.1016/j.compag.2012.08.004

Khosruzzaman, S., Asgar, M. A., Rahman, K. R., & Akbar, S. (2010). Energy Intensity and Productivity in Relation to Agriculture-Bangladesh Perspective. Journal of Bangladesh Academy of Sciences, 34(1), 59–70. https://doi.org/10.3329/jbas.v34i1.5492

Kuddus, M. A., Alam, M. J., Datta, G. C., Miah, M. A., Sarker, A. K., & Sunny, M. A. R. (2021). Climate resilience technology for year round vegetable production in northeastern Bangladesh. International Journal of Agricultural Research, Innovation and Technology (IJARIT), 11(2355-2021-1223), 29-36. https://doi.org/10.3329/ijarit.v11i1.54464

Kuddus, M. A., Datta, G. C., Miah, M. A., Sarker, A. K., Hamid, S. M. A., & Sunny, A. R. (2020). Performance study of selected orange fleshed sweet potato varieties in north eastern bangladesh. Int. J. Environ. Agric. Biotechnol, 5, 673-682. https://dx.doi.org/10.22161/ijeab.53.21

Kuddus, M. A., Sunny, A. R., Sazzad, S. A., Hossain, M., Rahman, M., Mithun, M. H., Hasan, S. E., Ahmed, K. J., Zandonadi, R. P., Han, H., Ariza-Montes, A., Vega-Muñoz, A., & Raposo, A. (2022). Sense and Manner of WASH and Their Coalition With Disease and Nutritional Status of Under-five Children in Rural Bangladesh: A Cross-Sectional Study. Frontiers in Public Health, 10(Children and Health). https://doi.org/https://doi.org/10.3389/fpubh.2022.890293

Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2–33.

Li, L., He, X., Song, J., Liu, Y., Zeng, A., Yang, L., Liu, C., & Liu, Z. (2018). Design and experiment of variable rate orchard sprayer based on laser scanning sensor. International Journal of Agricultural and Biological Engineering, 11(1), 101–108. https://doi.org/10.25165/j.ijabe.20181101.3183

Luvisi, A., Triolo, E., Rinaldelli, E., Bandinelli, R., Pagano, M., & Gini, B. (2010). Radiofrequency applications in grapevine: From vineyard to web. Computers and Electronics in Agriculture, 70(1), 256–259. https://doi.org/https://doi.org/10.1016/j.compag.2009.08.007

Ma, X., & YB, Z. (2017). Current research situation and development trend of sensors. Journal of Qingdao University of Science and Technology: Natural Science Edition, 38(S1), 11–13.

Madushanki, A. A. R., Halgamuge, M. N., Wirasagoda, W. A. H. S., & Syed, A. (2019). Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review. International Journal of Advanced Computer Science and Applications, 10(4), 11–28. https://doi.org/10.14569/ijacsa.2019.0100402

Meng, Q., Cui, Y., Wang, H., & Li, S. (2015). Research on food safety traceability technology based on internet of things. Advance Journal of Food Science and Technology, 8(2), 126–130. https://doi.org/10.19026/ajfst.8.1479

Mondal, M. H. (2010). Ondal 1. Bangladesh Journal of Agricultural Research, 35(June), 235–245.

Morais, R., Fernandes, M. A., Matos, S. G., Peres, E., Cunha, C. R., López, J. A., & Ferreira, P. J. S. G. (2013). A framework for wireless sensor networks management for precision viticulture and agriculture based on IEEE 1451 standard. Computers and Electronics in Agriculture, 95, 19–30. https://doi.org/https://doi.org/10.1016/j.compag.2013.04.001

Nayyar, A., & Puri, V. (2017). Smart farming: Iot based smart sensors agriculture stick for live temperature and moisture monitoring using arduino, cloud computing & solar technology. Communication and Computing Systems - Proceedings of the International Conference on Communication and Computing Systems, ICCCS 2016, 673–680. https://doi.org/10.1201/9781315364094-121

Noor-E-Sabiha, & Rahman, S. (2018). Environment-smart agriculture and mapping of interactions among environmental factors at the farm level: A directed graph approach. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051580

Panetto, H., Lezoche, M., Hormazabal, J. E. H., Diaz, M. del M. E. A., & Kacprzyk, J. (2020). Special issue on Agri-Food 4.0 and digitalization in agriculture supply chains - New directions, challenges and applications?. Computers in Industry, 116, 103188. https://doi.org/https://doi.org/10.1016/j.compind.2020.103188

Papetti, P., Costa, C., Antonucci, F., Figorilli, S., Solaini, S., & Menesatti, P. (2012). A RFID web-based infotracing system for the artisanal Italian cheese quality traceability. Food Control, 27(1), 234–241. https://doi.org/https://doi.org/10.1016/j.foodcont.2012.03.025

Patil, V. C., Al-Gaadi, K. A., Biradar, D. P., & Rangaswamy, M. (2012). Internet of things (Iot) and cloud computing for agriculture: An overview. Proceedings of agro-informatics and precision agriculture (AIPA 2012), India, 292, 296.

Philibert, C., Pershing, J., & Gray, K. (2002). Beyond Kyoto: energy dynamics and climate stabilisation. IEA. https://www.osti.gov/etdeweb/biblio/20310114

Ping Hua, P. H., Wang JiHua, W. J., Ma ZhiHong, M. Z., & Du YuanFang, D. Y. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety.

Prathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IOT Based Monitoring System in Smart Agriculture. IEEE Recent Advances in Electronics and Communication Technology. https://doi.org/10.1109/ICRAECT.2017.52

Ruiz-Garcia, L., Barreiro, P., Rodriguez-Bermejo, J., & Robla, J. I. (2007). Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks. Spanish Journal of Agricultural Research, 5(2), 142–156. https://doi.org/10.5424/sjar/2007052-234

Suhohen, J., Kohvakka, M., Kaseva, V., Hämäläinen, T. D., & Hännikäinen, M. (2012). Low-Power Wireless Sensor Networks: Protocols, Services and Applications; Springer Science & Business Media. Springer US. https://books.google.com.bd/books?hl=en&lr=&id=UVevNsRUQGUC&oi=fnd&pg=PR3&dq=.+Suhonen,+J.%3B+Kohvakka,+M.%3B+Kaseva,+V.%3B+Hämäläinen,+T.D.%3B+Hännikäinen,+M.+Low-Power+Wireless+Sensor+Networks:+Protocols,+Services+and+Applications%3B+Springer+Science+%26+Business+Media:+New+York,+NY,+USA,+2012.&ots=Mv_7vkKCQe&sig=wwH0Sz9FLuh2oJU_PqKC4aLm8k8&redir_esc=y#v=onepage&q&f=false

Sultana, J., Siddique, M. N. A., & Abdullah, M. R. (2014). Fertilizer recommendation for Agriculture: practice, practicalities and adaptation in Bangladesh and Netherlands. International Journal of Business, Management and Social Research, 1(1), 21–40. https://doi.org/10.18801/ijbmsr.010115.03

Sunny, A. R., Mithun, M. H., Prodhan, S. H., Ashrafuzzaman, M., Rahman, S. M. A., Billah, M. M., Hussain, M., Ahmed, K. J., Sazzad, S. A., Alam, M. T., Rashid, A., & Hossain, M. M. (2021). Fisheries in the context of attaining sustainable development goals (Sdgs) in bangladesh: Covid-19 impacts and future prospects. Sustainability (Switzerland), 13(17), 1–22. https://doi.org/10.3390/su13179912

Sunny, A. R., Prodhan, S. H., Ashrafuzzaman, M., Sazzad, S. A., Rahman, S. M. A., Billah, M. M., Hussain, M., Rahman, M., Nadim Haider, K. M., & Alam, M. T. (2021). Livelihoods and vulnerabilities of small-scale fishers to the impacts of climate variability and change: Insights from the coastal areas of bangladesh. Egyptian Journal of Aquatic Biology and Fisheries, 25(4), 549–571. https://doi.org/10.21608/EJABF.2021.191652

Syeed, M. M., Islam, M. A., & Fatema, K. (2020). Precision agriculture in Bangladesh: need and opportunities. Precis. Agric, 29, 6782-6800

Thakur, M., & Forås, E. (2015). EPCIS based online temperature monitoring and traceability in a cold meat chain. Computers and Electronics in Agriculture, 117, 22–30. https://doi.org/https://doi.org/10.1016/j.compag.2015.07.006

Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007

Vellidis, G., Tucker, M., Perry, C., Kvien, C., & Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 61(1), 44–50. https://doi.org/https://doi.org/10.1016/j.compag.2007.05.009

Villa-Henriksen, A., Edwards, G. T. C., Pesonen, L. A., Green, O., & Sørensen, C. A. G. (2020). Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosystems Engineering, 191, 60–84. https://doi.org/10.1016/j.biosystemseng.2019.12.013

Wamba, S. F., Lefebvre, L. A., Bendavid, Y., & Lefebvre, É. (2008). Industry, Exploring the impact of RFID technology and the EPC network on mobile B2B eCommerce: A case study in the retail. International Journal of Production Economics, 112(2), 614–629. https://doi.org/https://doi.org/10.1016/j.ijpe.2007.05.010

Warrier, M. M., & Kumar, A. (2016). An Energy Efficient Approach for Routing in Wireless Sensor Networks. Procedia Technology, 25(Raerest), 520–527. https://doi.org/10.1016/j.protcy.2016.08.140

Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of Things. International Journal of Communication Systems, 25(9), 1101–1102. https://doi.org/https://doi.org/10.1002/dac.2417

XinQing, X., QiLe, H., ZeTian, F., Xu, M., & XiaoShuan, Z. (2016). Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics. Food Control, 60, 656–666. https://doi.org/https://doi.org/10.1016/j.foodcont.2015.09.012

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
747
View
0
Share