Multidrug Resistance and Molecular Characterization of Klebsiella spp. Isolated from the Cloacal Samples of Broiler Chickens in Bangladesh
Sanjana Mahbub Supty 1,†, Tarif Md Faiyaz Saadat 1,†, Khondoker Tanjim Islam 1,2, Rafid Nahian Rubaiyat 1,2, Khadijatul Kubra 1, S M Bakhtiar UL Islam 1*
Microbial Bioactives 6(1) 1-11 https://doi.org/10.25163/microbbioacts.619419
Submitted: 06 December 2023 Revised: 20 December 2023 Published: 24 December 2023
To raise awareness about the public health threat posed by multidrug-resistant and virulent Klebsiella spp. from broiler chickens in Bangladesh.
Abstract
Klebsiella spp. poses a significant zoonotic threat, capable of direct and indirect transmission from poultry farms to humans, resulting in severe conditions such as pneumonia, bloodstream infection, enteric fever, meningitis and urinary tract infections. The escalating use of antibiotics in the poultry industry is contributing to the rise of multidrug-resistant (MDR) microorganisms. Thus, a study was undertaken to comprehend the multidrug resistance and virulence gene profile of Klebsiella spp. isolated from poultry cloacal samples sourced from local markets of North Dhaka, Bangladesh. Following aseptic collection, the samples were transported to the laboratory for pure culture isolation. Employing standard microbiological methods such as mucoid colony characteristic, Gram-negative rod-shaped bacteria, biochemical tests and lactose fermentation in selective media, the isolated colonies were presumptively identified. Subsequently, an antibiotic susceptibility test, utilizing the disk diffusion assay, was conducted to assess drug sensitivity in these isolates. A PCR assay was performed to determine the presence or absence of KPC gene of Klebsiella. Among the isolates, ten colonies were identified as Klebsiella spp. based on the colony characteristics, Gram staining, biochemical tests and growth on selective media. Notably, eight isolates (excluding 2 and 4) were incapable of producing indole from tryptophan, indicating the presence of two different types of species. All isolates exhibited resistance to at least three antibiotics, namely ceftazidime, ampicillin and cefoxitin. Isolate 2 and 5 were demonstrated additional resistance to azithromycin, while isolate 9 and 10 exhibited further resistance to streptomycin and doxycycline. Molecular analysis indicated that 40% of these isolates harbor KPC virulent gene (880bp), with the most multidrug resistant isolate 9 and 10 possessing this gene. This study is pivotal for assessing the prevalence of virulent and MDR Klebsiella spp. in chicken cloacal samples, providing insights into shedding and transmission risk on soil and water environment, as well as to humans.
Keywords: Bangladesh, Klebsiella spp., PCR, Poultry, Multidrug resistance.
References
Abreu, R., Semedo-Lemsaddek, T., Cunha, E., Tavares, L., & Oliveira, M. (2023). Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms, 11(4), 953. https://doi.org/10.3390/microorganisms11040953
Agyare, C., Etsiapa Boamah, V., Ngofi Zumbi, C., & Boateng Osei, F. (2019). Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Y. Kumar (Ed.), Antimicrobial Resistance—A Global Threat. IntechOpen. https://doi.org/10.5772/intechopen.79371
Alves, M. S., Dias, R. C. D. S., De Castro, A. C. D., Riley, L. W., & Moreira, B. M. (2006). Identification of Clinical Isolates of Indole-Positive and Indole-Negative Klebsiella spp. Journal of Clinical Microbiology, 44(10), 3640–3646. https://doi.org/10.1128/JCM.00940-06
Awoke, T., Teka, B., Seman, A., Sebre, S., Yeshitela, B., Aseffa, A., Mihret, A., & Abebe, T. (2021). High Prevalence of Multidrug-Resistant Klebsiella pneumoniae in a Tertiary Care Hospital in Ethiopia. Antibiotics, 10(8), 1007. https://doi.org/10.3390/antibiotics10081007
Brendecke, J., Homeier-Bachmann, T., Schmitz Ornés, A., Guenther, S., Heiden, S. E., Schwabe, M., Eger, E., & Schaufler, K. (2022). Multidrug-Resistant High-Risk Escherichia coli and Klebsiella pneumoniae Clonal Lineages Occur in Black-Headed Gulls from Two Conservation Islands in Germany. Antibiotics, 11(10), 1357. https://doi.org/10.3390/antibiotics11101357
Chen, L., Mathema, B., Chavda, K. D., DeLeo, F. R., Bonomo, R. A., & Kreiswirth, B. N. (2014). Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding. Trends in Microbiology, 22(12), 686–696. https://doi.org/10.1016/j.tim.2014.09.003
Fatima, S., Liaqat, F., Akbar, A., Sahfee, M., Samad, A., Anwar, M., Iqbal, S., Khan, S. A., Sadia, H., Makai, G., Bahadur, A., Naeem, W., & Khan, A. (2021). Virulent and multidrug-resistant Klebsiella pneumoniae from clinical samples in Balochistan. International Wound Journal, 18(4), 510–518. https://doi.org/10.1111/iwj.13550
Gootz, T. D., Lescoe, M. K., Dib-Hajj, F., Dougherty, B. A., He, W., Della-Latta, P., & Huard, R. C. (2009). Genetic Organization of Transposase Regions Surrounding bla KPC Carbapenemase Genes on Plasmids from Klebsiella Strains Isolated in a New York City Hospital. Antimicrobial Agents and Chemotherapy, 53(5), 1998–2004. https://doi.org/10.1128/AAC.01355-08
Hamid, M. A., Rahman, M. A., Ahmed, S., & Hossain, K. M. (2016). Status of Poultry Industry in Bangladesh and the Role of Private Sector for its Development. Asian Journal of Poultry Science, 11(1), 1–13. https://doi.org/10.3923/ajpsaj.2017.1.13
Hannan, M. A., Ahmed, M. B., & Islam, S. S. (2020). Socioeconomic condition and problem confrontation by the chicken farmers in the southwestern region of Bangladesh. Asian Journal of Medical and Biological Research, 6(3), 507–513. https://doi.org/10.3329/ajmbr.v6i3.49801
Hansen, D. S., Aucken, H. M., Abiola, T., & Podschun, R. (2004). Recommended Test Panel for Differentiation of Klebsiella Species on the Basis of a Trilateral Interlaboratory Evaluation of 18 Biochemical Tests. Journal of Clinical Microbiology, 42(8), 3665–3669. https://doi.org/10.1128/JCM.42.8.3665-3669.2004
Haque, Md. H., Sarker, S., Islam, Md. S., Islam, Md. A., Karim, Md. R., Kayesh, M. E. H., Shiddiky, M. J. A., & Anwer, M. S. (2020). Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. Biology, 9(11), 411. https://doi.org/10.3390/biology9110411
Hedman, H. D., Vasco, K. A., & Zhang, L. (2020). A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals, 10(8), 1264. https://doi.org/10.3390/ani10081264
Hennessey, M., Fournié, G., Hoque, Md. A., Biswas, P. K., Alarcon, P., Ebata, A., Mahmud, R., Hasan, M., & Barnett, T. (2021). Intensification of fragility: Poultry production and distribution in Bangladesh and its implications for disease risk. Preventive Veterinary Medicine, 191, 105367. https://doi.org/10.1016/j.prevetmed.2021.105367
Iqbal, Z., Mumtaz, M. Z., & Malik, A. (2021). Extensive drug-resistance in strains of Escherichia coli and Klebsiella pneumoniae isolated from paediatric urinary tract infections. Journal of Taibah University Medical Sciences, 16(4), 565–574. https://doi.org/10.1016/j.jtumed.2021.03.004
Jain, P., Bepari, A. K., Sen, P. K., Rafe, T., Imtiaz, R., Hossain, M., & Reza, H. M. (2021). High prevalence of multiple antibiotic resistance in clinical E. coli isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. Scientific Reports, 11(1), 22859. https://doi.org/10.1038/s41598-021-02251-w
Juan, C.-H., Fang, S.-Y., Chou, C.-H., Tsai, T.-Y., & Lin, Y.-T. (2020). Clinical characteristics of patients with pneumonia caused by Klebsiella pneumoniae in Taiwan and prevalence of antimicrobial-resistant and hypervirulent strains: A retrospective study. Antimicrobial Resistance & Infection Control, 9(1), 4. https://doi.org/10.1186/s13756-019-0660-x
Kousar, S., Rehman, N., Javed, A., Hussain, A., Naeem, M., Masood, S., Ali, H. A., Manzoor, A., Khan, A. A., Akrem, A., Iqbal, F., Zulfiqar, A., Jamshaid, M. B., Waqas, M., Waseem, A., & Saeed, M. Q. (2021). Intensive Poultry Farming Practices Influence Antibiotic Resistance Profiles in Pseudomonas aeruginosa Inhabiting Nearby Soils. Infection and Drug Resistance, Volume 14, 4511–4516. https://doi.org/10.2147/IDR.S324055
Kowalczyk, J., Czokajlo, I., Ganko, M., Smialek, M., & Koncicki, A. (2022). Identification and Antimicrobial Resistance in Klebsiella spp. Isolates from Turkeys in Poland between 2019 and 2022. Animals, 12(22), 3157. https://doi.org/10.3390/ani12223157
Lavigne, J.-P., Cuzon, G., Combescure, C., Bourg, G., Sotto, A., & Nordmann, P. (2013). Virulence of Klebsiella pneumoniae Isolates Harboring blaKPC-2 Carbapenemase Gene in a Caenorhabditis elegans Model. PLoS ONE, 8(7), e67847. https://doi.org/10.1371/journal.pone.0067847
Mondal, D. (2022). Effect of Biofilm on Production of Poultry. In T. Das (Ed.), Focus on Bacterial Biofilms. IntechOpen. https://doi.org/10.5772/intechopen.102951
Nirwati, H., Sinanjung, K., Fahrunissa, F., Wijaya, F., Napitupulu, S., Hati, V. P., Hakim, M. S., Meliala, A., Aman, A. T., & Nuryastuti, T. (2019). Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proceedings, 13(S11), 20. https://doi.org/10.1186/s12919-019-0176-7
Nourish Poultry and Hatchery Ltd., Dhaka, Bangladesh, Rahman, M., Chowdhury, E. H., Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh, Parvin, R., & Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. (2021). Small-scale poultry production in Bangladesh: Challenges and impact of COVID-19 on sustainability. German Journal of Veterinary Research, 1(1), 19–27. https://doi.org/10.51585/gjvr.2021.0004
Odari, R., & Dawadi, P. (2022). Prevalence of Multidrug-Resistant Klebsiella pneumoniae Clinical Isolates in Nepal. Journal of Tropical Medicine, 2022, 1–6. https://doi.org/10.1155/2022/5309350
Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiology and Molecular Biology Reviews, 80(3), 629–661. https://doi.org/10.1128/MMBR.00078-15
Patel, S. S., Chauhan, H. C., Patel, A. C., Shrimali, M. D., Patel, K. B., Prajapati, B. I., Kala, J. K., Patel, M. G., Rajgor, M., & Patel, M. A. (2017). Isolation and Identification of Klebsiella pneumoniae from Sheep-Case Report. International Journal of Current Microbiology and Applied Sciences, 6(5), 331–334. https://doi.org/10.20546/ijcmas.2017.605.037
Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clinical Microbiology Reviews, 11(4), 589–603. https://doi.org/10.1128/CMR.11.4.589
Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6(4), 6.4.14. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
Rahman, Md. A., Begum, Mst. D., Afroz, F., & Rahman, Md. K. (2023). Isolation and Molecular Detection of Klebsiella pneumoniae from Children Affected by Pneumonia in Dinajpur District, Bangladesh. South Asian Journal of Research in Microbiology, 16(4), 14–26. https://doi.org/10.9734/sajrm/2023/v16i4314
Riwu, K. H. P., Effendi, M. H., Rantam, F. A., Khairullah, A. R., & Widodo, A. (2022). A review: Virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Veterinary World, 2172–2179. https://doi.org/10.14202/vetworld.2022.2172-2179
Saha, R., Farrance, C. E., Verghese, B., Hong, S., & Donofrio, R. S. (2013). Klebsiella michiganensis sp. Nov., A New Bacterium Isolated from a Tooth Brush Holder. Current Microbiology, 66(1), 72–78. https://doi.org/10.1007/s00284-012-0245-x
Salaheen, S., Chowdhury, N., Hanning, I., & Biswas, D. (2015). Zoonotic bacterial pathogens and mixed crop-livestock farming. Poultry Science, 94(6), 1398–1410. https://doi.org/10.3382/ps/peu055
Salauddin, M., Akter, M., Hossain, M., & Rahman, M. (2019). Isolation of multi-drug resistant Klebsiella sp. From bovine mastitis samples in Rangpur, Bangladesh. Journal of Advanced Veterinary and Animal Research, 6(3), 362. https://doi.org/10.5455/javar.2019.f355
Sivaraman, G. K., Sudha, S., Muneeb, K. H., Shome, B., Holmes, M., & Cole, J. (2020). Molecular assessment of antimicrobial resistance and virulence in multi drug resistant ESBL-producing Escherichia coli and Klebsiella pneumoniae from food fishes, Assam, India. Microbial Pathogenesis, 149, 104581. https://doi.org/10.1016/j.micpath.2020.104581
Suay-García & Pérez-Gracia. (2019). Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics, 8(3), 122. https://doi.org/10.3390/antibiotics8030122
Thorpe, H. A., Booton, R., Kallonen, T., Gibbon, M. J., Couto, N., Passet, V., López-Fernández, S., Rodrigues, C., Matthews, L., Mitchell, S., Reeve, R., David, S., Merla, C., Corbella, M., Ferrari, C., Comandatore, F., Marone, P., Brisse, S., Sassera, D., … Feil, E. J. (2022). A large-scale genomic snapshot of Klebsiella spp. Isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nature Microbiology, 7(12), 2054–2067. https://doi.org/10.1038/s41564-022-01263-0
.Wyres, K. L., & Holt, K. E. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Current Opinion in Microbiology, 45, 131–139. https://doi.org/10.1016/j.mib.2018.04.004
Yao, H., Liu, J., Jiang, X., Chen, F., Lu, X., & Zhang, J. (2021). Analysis of the Clinical Effect of Combined Drug Susceptibility to Guide Medication for Carbapenem-Resistant Klebsiella pneumoniae Patients Based on the Kirby–Bauer Disk Diffusion Method. Infection and Drug Resistance, Volume 14, 79–87. https://doi.org/10.2147/IDR.S282386
View Dimensions
View Altmetric
Save
Citation
View
Share