MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
REVIEWS   (Open Access)

Cyanobacteria as a Source of Bioactive Compounds with Anticancer, Antibacterial, Antifungal, and Antiviral Activities: A Review

Reem Abdulsalam Dawood Al-Nedawe1 and Zetty Norhana Balia Yusof1,2,3 *

+ Author Affiliations

Microbial Bioactives 6(1) 1-16 https://doi.org/10.25163/microbbioacts.617330

Submitted: 01 January 2023  Revised: 15 May 2023  Published: 05 August 2023 

Cyanobacteria's bioactivities, mechanisms, and potential cancer prevention

Abstract


Cyanobacteria a group of photosynthetic microorganisms, exist in almost all ecosystems in the world. Regarding health and disease prevention, cyanobacteria have been cited as a promising natural source of diverse secondary metabolites that exhibit significant bioactivities with potential pharmacological uses. Presently, great attention has been concentrated on the anticancer role of aquatic cyanobacteria that comprise an important source of bioactive compounds. Cyanobacteria-derived natural compounds and their synthetic analogs exhibited attractive results and showed remarkable activity by reaching phase II and III clinical trials successfully. Therefore, natural products from cyanobacteria might represent promising sources for novel anticancer therapy. Besides, microbial infections and infectious diseases from antimicrobial resistance (AMR) pose a direct threat to health and well-being because of the increase in antimicrobial resistance and the evolution of novel pathogenic strains. The search for novel antibiotics become increasingly urgent. Extensive efforts have been invested to find antimicrobial compounds from cyanobacteria to limit the misuse of commercial antibiotics. The development of natural anticancer and antimicrobial compounds from fresh water and marine cyanobacterial metabolites is a valuable trial. This review article summarizes the reported anticancer, antiviral, antifungal, and antibacterial properties of cyanobacteria and their mechanisms of action.

Keywords: Anticancer; Antimicrobial; Bioactive compound; Cyanobacteria- novel therapies for their effective use in clinical practice and to improve patient-related outcomes. 

References


Abed, R.M.M., Dobretsov, S., Sudesh, K. (2008). Applications of cyanobacteria in biotechnology. J Appl Microbiol. 106, 1-12.

Abeer Hussein Ali, and Mukhlif Mohsin Slaihimb, (2023),  Design, Synthesis, And Characterization Of New Schiff Bases For 3-Amino-1,2,4-Triazole-5-Thiolate Salt, Bearing Morpholine Ring And Biological Evaluation As Antibacterial Agents, Journal of Angiotherpay, 7(1)

Adams, C.P., Brantner, V.V. (2006).  Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood). 25, 420-428.

Advani, R.H., Lebovic, D., Chen, A., Brunvand, M., Goy, A., Chang, J.E., Hochberg, E., Yalamanchili, S., Kahn, R., Lu, D., Agarwal, P., Dere, R.C., Hsieh, H.J., Jones, S., Chu, Y.W., Cheson, B.D. (2017). Phase I study of the anti-CD22 antibody-drug conjugate Pinatuzumab Vedotin with/without rituximab in patients with relapsed/refractory B-cell non-hodgkin lymphoma. Clin Cancer Res. 23, 1167–1176.

Aesoy, R., Herfindal, L. (2022). Cyanobacterial anticancer compounds in clinical use: Lessons from the dolastatins and cryptophycins, in: Lopes, G., Silva, M., Vasconcelos, V. (Eds), The Pharmacological Potential of Cyanobacteria. Elsevier, Amsterdam, pp. 55-79.

Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., Schenk, P.M. (2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal. 28, 1834-1841.

Andrianasolo, S.L., Gross, H., Goeger, D., Musafija-Girt, M., McPhail, K., Leal, R.M., Mooberry, S.L., Gerwick, W.H. (2005). Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org. Lett. 7, 1375-1378.

Asthana, R.K., Srivastava, A., Singh, A.P., Deepali, Singh, S.P., Nath, G., Srivastava, R., Srivastava, B.S. (2006). Identification of an antimicrobial entity from Fischerella sp. colonizing neem tree bark. J. App. Phycol. 18, 33–39.

Berry, J., Gantar, M., Gawley, R.E., Wang, M., Rein, K.S. (2004).  Pharmacology and toxicology of phayokolide A, a bioactive metabolite from a fresh water species of Lyngbya isolated from the Florida everglades. Comp Biochem Physiol C Toxicol Pharmacol. 139, 231–238.

Bhadury, P., Wright, P.C. (2004).  Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta. 219, 561-578.

Boopathy, N.S., Kathiresan, K. (2010). Anticancer drugs from marine flora: An overview. Journal of oncology. 2010, 214186.

Bui, T.H., Wray, V., Nimtz, M., Fossen, T., Preisitsch, M., Schröder, G., Wende, K., Heiden, S.E., Mundt, S. Balticidins, A-D. (2014). Antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. J. Nat. Prod. 77, 1287–1296.

cancer cell line and emerging as a potential anticancer therapeutics. International Journal of Biotech Trends and Technology. 12, 18-30.

Cardllina, J.H., Moore, R.E., Arnold, E.V., Clardy, J. (1979). Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula gomont. J. Org. Chem., 44, pp. 4039-4042.

Carpine, R., Sieber, S. (2021). Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. Current Research in Biotechnology. 3, 65-81.

Chen, X., Smith, G.D., Waring, P. (2003). Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. Journal of Applied Phycology. 15, 269-277.

Choi, H., Engene, N., Jennifer E. Smith, J.E., Linda B. Preskitt, L.B., William H. Gerwick, W.H. (2010). Crossbyanols A-D, Toxic Brominated Polyphenyl Ethers from the Hawai’ian Bloom-Forming Cyanobacterium Leptolyngbya crossbyana. J Nat Prod. 73, 517–522.

Costa, M., Rodrigues, J.C., Fernandes, M.H., Barron, P., Vasconcelos, V., Martin's, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Mar Drugs. 10, 2181-2207.

Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infect and Drug Resist. 12, 3903–3910.

Damodaran, B., Nagaraja, P., Jain, V., Wimalasiri,,M.P.M.V., Sankolli, G.M., Kumar, G.V., Prabhu, V. (2019). Phytochemical Screening and Evaluation of Cytotoxic Activity of Calotropis gigantea Leaf Extract on MCF7, HeLa, and A549 Cancer Cell Lines. Journal of Natural Science, Biology and Medicine. 10, 131-138.

Davies-Coleman, M.T., Dzeha, T.M., Gray, C.A., Hess, S., Pannell L.K., Hendricks, D.T., Arendse, C.E. (2003). Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya Majuscula. J Nat Prod. 66, 712-715.

De Oliveira, E.O., Graf, K.M., Patel, M.K., Baheti, A., Kong, H.S., MacArthur, L.H., Dakshanamurthy, S., Wang, K., Brown, M.L., Paige, M. (2011). Synthesis and evaluation of hermitamides A and B as human voltage-gated sodium channel blockers. Bioorganic medicinal chemistry. 19, 4322-4329.

Demay, J., Bernard, C., Reinhardt, A., Marie, B. (2019). Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs. 17, 320.

Dewi, I.C., Falaise, C., Hellio, C., Bourgougnon, N., Mouget, J.L. (2018). Anticancer, Antiviral, Antibacterial, and Antifungal Properties in Microalgae, in: Levine, I.A., Fleurence, J. (Eds.), Microalgae in Health and Disease Prevention. Elsevier, Amsterdam, pp.  235-261.

Dey, B., Lerner, D.L., Lusso, P., Boyd, M.R., Elder, J.H., Berge,r E.A. (2000). Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol. 74, 4562-4569.

Dixit, R.B., Suseela, M.R. (2013). Cyanobacteria: Potential candidates for drug discovery. Antonie Van Leeuwenhoek. 103, 947–961.

Doan, N.T., Stewart, P.R., Smith, G.D. (2001). Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol. Lett. 196, 135-139.

Dobretsov, S., Teplitski, M.,  Alagely, A., Gunasekera, S.P., Paul, V.J. (2010). Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry Environ. Microbiol. 2, pp. 739-744,

Dodds, W.K. (2002). Freshwater Ecology: Concepts and Environmental Applications, first ed.  Elsevier, Amsterdam.

Dvorák, P., Poulícková, A., Hašler, P., Belli, M., Casamatta, D.A., Papini, A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation. 24, 739–757.

Edwards, D.J., Marquez, B.L., Nogle, L.M., McPhail, K., Goeger, D.E., Roberts, M.A., Gerwick, W.H. (2004). Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol. 11, 817-33.

Ercolano, G., Chicco, P.D., Ianaro, A. (2019). New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar Drugs. 17, 31.

Feng, S.S., Chien, S. (2003). Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci. 58, 4087-4114.

Ferdous, U. T., & Yusof, Z. N. B. (2021). Algal terpenoids: A potential source of antioxidants for cancer therapy. Terpenes and Terpenoids-Recent Advances, 63-76.

Ferdous, U. T., & Yusof, Z. N. B. (2022). Climate Change and Algal Communities. In Progress in Microalgae Research-A Path for Shaping Sustainable Futures. IntechOpen.

Ferdous, U. T., & Yusof, Z. N.B. (2021). Insight into potential anticancer activity of algal flavonoids: current status and challenges. Molecules, 26(22), 6844.

Ferdous, U.T., Yusof, Z.N.B. (2021). Medicinal Prospects of Antioxidants from Algal Sources in Cancer Therapy. Frontiers in Pharmacology. 12, 157.

Frankmolle, P.W., Knuebel, G., Moore, E.R., Patterson, M.L.G. (1992). Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II. Structures of laxaphycins A, B, D and E. J Antibiot (Tokyo). 45, 1458-66.

Fuentes-Antrás, J., Genta, S., Vijenthira, A., Siu, L.L. (2023). Antibody–drug conjugates: in search of partners of choice. Trends in Cancer. 9, 339-354.

Gademann, K., Portmann, C. (2008). Secondary metabolites from cyanobacteria: complex structure and powerful bioactivities. Curr Org Chem. 12, 326-341.       

Garrison, A.R., Giomarelli, B.G., Lear-Rooney, C.M., Saucedo, C.J., Yellayi, S., Krumpe, L.R.H., Rose, M., Paragas, J., Bray, M., Olinger, G.G., McMahon, J.B., Huggins, J., O'Keefe, B.R. (2014). The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Res. 0, 1-7.

Gesner-Apter, S., Carmeli, S. (2008). Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron. 64, 6628–6634. 

Gheda, S.F., Ismail, G.A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. An Acad Bras Cienc. 92(2): e20190934. 

Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G.M., Ioakeim, S., Zervou, S.K., Christophoridis, C., Triantis, T.M., Kaloudis, T., Hiskia, A., Arsenakis, M. (2019). Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. Toxins. 11, 436.

Gupta, D.K., Kaur, P., Leong, S.T., Tan, L.T., Prinsep, M.R., Chu, J.J.H. (2014). Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum. Mar Drugs. 12, 115-127.   

Gutierrez, M., Tidgewell, K., Capson, T.L., Engene, N., Almanza, A., Schemies, J., Jung, M., Gerwick, W.H. (2010). Malyngolide dimer, a bioactive symmetric cyclodepside from the panamanian marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 73, 709–711.   

Han, B., Gross, H., Goeger, D.E., Mooberry, S.L., Gerwick, W.H. (2006).  Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscule. J Nat Prod. 69, 572-5. 

Han, B., McPhail, K., Gross, H., Goeger, D.E., Mooberry, S.L., Gerwick, W.H. (2005). Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marinen cyanobacterium Lyngbya majuscula. Tetrahedron. 61, 11723–11729.

Han, B.N., Liang, T.T., Keen, L.J., Fan, T.T., Zhang, X.D., Xu, L., Zhao, Q., Wang, S.P., Lin, H.W. (2018). Two Marine Cyanobacterial Aplysiatoxin Polyketides, Neodebromoaplysiatoxin A and B, with K+ Channel Inhibition Activity. Org Lett. 20, 578–581.

Hao, S., Yan, Y., Li, S., Zhao, L., Zhang, C., Liu, L., Wang, C. (2018). The In Vitro Anti-Tumor Activity of Phycocyanin against Non-Small Cell Lung Cancer Cells. Mar Drugs. 16, 178.

Hatae, N., Satoh, R., Chiba, H., Osaki, T., Nishiyama, T., Ishikura, M., Abe, T., Hibino, S., Choshi, T., Okada, C., Toyota, E. (2014). N-Substituted calothrixin B derivatives inhibited the proliferation of HL-60 promyelocytic leukemia cells. Medicinal Chemistry Research. 23, 4956–4961.

Hayashi, T., Hayashi, K., Maeda, M., Kojima, I. (1996). Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod. 59, 83–87.

Hemscheidt, T., Puglisi, M.P., Larsen, L.K., Patterson, G.M.L., Moore, R.E., Rios, J.L., Clardy, J. (1994). Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. J. Org. Chem. 59, 3467–3471.

Hirata, K., Yoshitomi, S., Dwi, S., Iwabe, O., Mahakhant, A., Polchai, J., Miyamoto, K. (2003). Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J. Biosci Bioeng. 95, 512-517.

Hong, J., Luesch, H. (2012). Largazole: from discovery to broad-spectrum therapy. J Nat Prod. 4, 449-456.

Horgen, F.D., Kazmierski, E.B., Westenburg, H.E., Yoshida, W.Y., Scheuer, P.J. (2002). Malevamide D: isolation and structure determination of an isodolastatin H analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod. 65, 487-491.

Humisto, A., Jokela, J., Teigen, K., Wahlsten, M., Permi, P., Sivonen, K., Herfindal, L. (2019). Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochim Biophys Acta Biomembr. 1861, 1510-1521.

Jaki, B., Orjala, J., Heilmann, J., Linden, A., Vogler, B., Sticher, O. (2000). Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod. 63, 339-343.

Javed Ahamad, Saima Amin, Kamran J Naquvi, Showkat R Mir. (2023b). Gymnemagenin a Promising Drug Candidate for Management of Hyperglycemia: In-Vitro and In-Vivo Study, Journal of Angiotherapy, 7(1), 1-6, 9357

Javed Ahamad. (2023a). Characterization of Essential Oil Composition of Syzygium aromaticum Linn. (Clove) by GC-MS and Evaluation of its Antioxidant Activity, Journal of Angiotherapy, 7(1), 1-5

Jiang, L., Wang, Y., Liu, G., Liu, H., Zhu, F., Ji, H., Li, B. (2018). C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int. 18, 12.

Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., Li, B. (2017).  Phycocyanin: A Potential Drug for Cancer Treatment. Journal of Cancer. 8, 3416-3429.

Kailash, J., Ragini, G., AS, Y. (2022). Microcystin-LR exhibit cytotoxicity in Myeloma Sp2/01

Kang, H.K., Choi, M.C., Seo, C.H., Park, Y. (2018). Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int. J. Mol. Sci. 19, 919.

Kapoor, S.S. (2013). Dolastatin 15 and its emerging antineoplastic effects. European Journal of Cancer Prevention. 22, 486-487.

Kar, J., Ramrao, D.P., Zomuansangi, R., Lalbiaktluangi, C., Singh, S.M., Joshi, N.C., Kumar, A., Kaushalendra, Mehta, S., Yadav, M.K., Singh, P.K. (2022). Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front. Microbiol. 13, 1034471.

Khalifa, S.A.M., Elias, N., Mohamed A. Farag, M.A., Chen, L., Saeed, A., Hegazy, M.E.F., Moustafa, M.S., Abd El-Wahed, A., Al-Mousawi, S.M., Musharraf, S.G., Chang, F.R., Iwasaki, A., Suenaga, K., Alajlani, M., Göransson, U., El-Seedi, H.R. (2019). Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs. 17, 491.    

Kounnis, V., Chondrogiannis, G., Mantzaris, M.D., Tzakos, A.G., Fokas, D., Papanikolaou, N.A., Galani, V., Sainis, I., Briasoulis, E. (2015). Microcystin LR Shows Cytotoxic Activity Against Pancreatic Cancer Cells Expressing the Membrane OATP1B1 and OATP1B3 Transporters. Anticancer Res. 35, 5857-65.

Kultschar, B., Llewellyn, C. (2018). Secondary metabolites in cyanobacteria, in: Vijayakumar, R., Raja, S. (Eds.), In Secondary Metabolites—Sources and Applications. IntechOpen, London, pp. 23–36.

Kumla, D., Sousa, M.E., Vasconcelos, V., Kijjoa, A. (2022). Specialized metabolites from cyanobacteria and their biological activities, in:  Lopes, G., Silva, M., Vasconcelos, V. (Eds.), The Pharmacological Potential of Cyanobacteria. Elsevier, Amsterdam, pp. 21-54.

Kwan, J.C., Eksioglu, E.A., Liu, C., Paul, V.J., Luesch, H. (2009). Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. Journal of Medicinal Chemistry. 52, 5732-5747.

Larsen, L.K., Moore, R.E., Patterson, G.M. (1994). Beta-carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod. 57, 419-421.

Li, B., Zhang, X., Gao, M., Chu, X. (2005). Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomedicine & pharmacotherapy. 59, 551-60.

Luesch, H., Chanda, S.K., Raya, R.M., DeJesus, P.D., Orth, A.P., Walker, J.R., Izpisua Belmonte, J.C., Schultz, P.G. (2006). A functional genomics approach to the mode of action of apratoxin A. Nat. Chem. Biol. 2, 158–167.

Luesch, H., Pangilinan, R., Yoshida, W.Y., Moore, R.E., Paul, V.J. (2001). Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya Majuscula. J Nat Prod. 64, 304-307.

MacMillan, J.B., Molinski, T.F. (2005). Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod. 68, 604-606.

Malloy, K.L., Villa, F.A., Engene, N., Matainaho, T., Berwick, L., Gerwick, W.H. (2011). Malyngamide 2, an Oxidized Lipopeptide with Nitric Oxide Inhibiting Activity from a Papua New Guinea Marine Cyanobacterium. J Nat Prod. 74, 95-98.

Marquez, B.L., Watts, K.S., Yokochi, A., Roberts, M.A., Verdier-Pinard, P., Jimenez, J.I., Hamel, E., Scheuer, P.J., Gerwick, W.H. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod. 65, 866–871.

Martins, D.O.S., Santos, I.A., Oliveira, D.M., Grosche, V.R., Jardim, A.C.G. (2020). Antivirals Against Chikungunya Virus: Is the Solution in Nature? Viruses. 12, 272.

Mason, C.P., Edward, K.R., Carlson, R.E., Pignatello, J., Gleason, F.K., Wood, J.M. (1982). Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science. 215, 400-2.

Matei, E., Basu, R., Furey, W., Shi J., Calnan, C., Aiken, C., Gronenborn, A.M. (2016). Structure and glycan binding of a new cyanovirin-N homolog. J Biol Chem. 291, 18967–18976.

Matthew, S., Paul, V.J., Luesch, H. (2009). Tiglicamides A–C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry. 70, 2058–2063.

Matthew, S., Ross, C., Rocca, J.R., Paul, V.J. (2007). Luesch, H. Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J. Nat. Prod. 70, 124–127.

Matthew, S., Schupp, P.J., Luesch, H. (2008). Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 71, 113–1116.

McFeeters, R.L., Xiong, C., O'Keefe, B.R., Bokesch, H.R., McMahon, J.B., Ratner, D.M., Castelli, R., Seeberger, P.H., Byrd, R.A. (2007). The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol. 369, 451-461.

Mimouni, V., Ulmann, L., Pasquet, V., Mathieu, M., Picot, L., Bougaran, G., Cadoret, J.P., Morant-Manceau, A., Schoefs, B. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol. 13, 2733-2750.

Mo, S., Krunic, A., Chlipala, G., Orjal, J. (2009). Antimicrobial ambiguine isonitriles from the cyanobacteium Fischerella ambigua. J Nat Prod. 72, 894-899.

Mondal, A., Bose, S., Banerjee, S., Patra, J.K., Malik, J., Mandal, S.K., Kilpatrick, K.L., Das, G., Kerry, R.G., Fimognari, C., Bishayee, A. (2020). Marine Cyanobacteria and Microalgae Metabolites—A Rich Source of Potential Anticancer Drugs. Mar Drugs. 18, 476.

Moniruddin Chowdhury, Syeda Humayra, Taha Sulayman, Keichiro Mihara et al., (2023). Use of Neutralizing Monoclonal Antibodies and Its Outcome Measures in COVID-19 Patients, Journal of Angiotherapy, 7(1), 1-7.

Montaser, R., Abboud, K.A., Paul, V.J., Luesch, H. (2011). Pitiprolamide, a prolinerich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscule from Guam. J Nat Prod. 74, 109-112.

Mooberry, S.L., Leal, R.M., Tinley, T.L., Luesch, H., Moore, R.E., Corbett, T.H. (2003). The molecular pharmacology of symplostatin 1: a new antimitotic dolastatin 10 analog. International Journal of Cancer. 104, 512-21.

Moon, S.S., Chen, J.L., Moore, R.E. (1992). Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J Org Chem. 57, 1097-1103.

Moore, E.R., Patterson, G.M.L., Carmichael, W.W. (1988). New pharmaceuticals from cultured blue-green alga. Mem Cal Acad Sci. 13:145-150.

Morlière, P., Mazière, J.C., Santus, R., Smith, C.D., Prinsep, M.R., Stobbe, C.C., Fenning, M.C., Golberg, J.L., Chapman, J.D. (1998). Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res. 58, 3571-3578.

Moulaei, T, Botos, I., Ziolkowska, N.E., Bokesch, H.R., Krumpe, L.R., Mckee, T.C., O'keefe, B.R., Dauter, Z., Wlodawer, A. (2007). Atomic-resolution crystal structure of the antiviral lectin scytovirin. Protein Sci. 16, 2756-2760.

Mundt, S., Kreitlow, S., Jansen, R. (2003). Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB051. Journal of Applied Phycology. 15, 263–267.

Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I. V., Ninova, M.S., Kussovski, V.K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Technol. 48, 1533–1540.

Nakagawa, Y., Yanagita, R.C., Hamada, N., Murakami, A., Takahashi, H., Saito, N., Nagai, H., Irie, K. (2009). A simple analogue of tumor-promoting aplysiatoxin is an antineoplastic agent rather than a tumor promoter: development of a synthetically accessible protein kinase C activator with bryostatin-like activity. Journal of the American Chemical Society. 131, 7573-7579.

Nandagopal, P., Steven, A.N., Chan, L.W., Rahmat, Z., Jamaluddin, H., Noh, N.I.M. (2021). Bioactive metabolites produced by cyanobacteria for growth adaptation and their pharmacological properties. Biology. 10, 1061.

Nigam, M., Suleria, H.A.R., Farzaei, M.H., Mishra, A.P. (2019). Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru. 27, 491–515.

Niveshika, E., Verma, A.K., Mishra, A.K., Singh, V.K. (2016). Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostoc sp. MGL001. Front. Microbiol. 7, 1899.

Nowruzi, B., Bouaïcha, N., Metcalf, J.S., Porzani, S.J., Konur, O. (2021). Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry. 192, 112959.

Nowruzi, B., Wahlsten, M., Jokela, J. (2019). A Report on Finding a New Peptide Aldehyde from Cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey's Analysis. Iran J Biotechnol. 17(2):e1853.

Nur Royhaila Mohamad, Farrah Payyadhah Borhan, Mohd Shahrizi Razali, Roswanira Abdul Wahab, (2023), Optimizing The Protocol For Extraction Of Bioactive Components From Hibiscus Sabdariffa With Potent Antioxidant Activity, Journal of Angiotherapy, 7(1), 1-9

Nurr Maria Ulfa Seruji, Vivien Jong Yi Mian, Nor Hisam Zamakshari et al., (2023), Antioxidant Potential of Calophyllum gracilentum: A Study on Total Phenolic Content, Total Flavonoid Content, and Free Radical Scavenging Activities, Journal of Angiotherapy, 7(1), 1-8

Osman, N.A.H.K., Siam, A.A., El-Manawy, I. M., Jeon, Y.J. (2020). Anticancer activity of a scarcely investigated Red Sea Alga Hormophysa cuneiformis against HL60, A549, HCT116 and B16 cell lines. Egyptian Journal of Aquatic Biology and Fisheries. 24, 497-508.

Ott, P.A., Pavlick, A.C., Johnson, D.B., Hart, L.L., Infante, J.R., Luke, J.J., Lutzky, J., Rothschild, N., Cowey, C.L., Alizadeh, A., Salama, A., He, Y., Bagley, R.G., Zhang, J., Hamid, O. (2017). A phase II study of glembatumumab vedotin (GV), an antibody-drug conjugate (ADC) targeting gpNMB, in advanced melanoma. J Clin Oncol. 35, 109.

Pandy, V.D. (2015). Cyanobacterial natural products as antimicrobial agents. Inter J Curr Microbiol Appl Sci. 4, 310-317.

Pereira, R.B., Evdokimov, N.M., Lefranc, F., Valentão, P., Kornienko, A., Pereira, D.M., Andrade, P.B., Gomes, N.G.M. (2019). Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar. Drugs. 17, 329.

Polyzois, A., Kirilovsky, D., Dufat, T., Michel, S. (2020). Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. Toxins. 12, 809.

Preisitsch, M., Harmrolfs, K., Pham, H.T., Heiden, S.E., Füssel, A., Wiesner, C., Pretsch, A., Swiatecka-Hagenbruch, M., Niedermeyer, T.H., Müller, R., Mundt, S. (2015). Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J. Antibiot. 68, 165-177.

Prestinaci, F., Pezzotti, P., Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 109, 309–318.

Prinsep, M.R., Caplan, F.R., Moore, R.E., Patterson, G.M.L., Smith, C.D. (1992). Tolyporphin: a novel multidrug resistance reversing agent from blue- green alga Tolypothrix nodosa. J. Am. Chem. Soc. 114, 385-387.

Pumiputavon, K., Chaowasku, T., Saenjum, C., Osathanunkul, M., Wungsintaweekul, B., Chawansuntati, K., Wipasa, J., Lithanatudom, P. (2017). Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complementary Altern Med. 17, 294.

Qamar, H., Hussain, K., Soni, A., Hussain, T., Chenais, B. (2021). Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovectors. Molecules. 26, 247.

Ramaswam, A.V., Sorrels, C.M., Gerwick, W.H. (2007). Cloning and Biochemical Characterization of the Hectochlorin Biosynthetic Gene Cluster from the Marine Cyanobacterium Lyngbya majuscule. J. Nat. Prod. 70, 1977–1986.

Ramos, D.F., Matthiensen, A., Colvara, W., de Votto, A.P.S., Trindade, G.S., da Silva, P.E.A., Yunes, J.S. (2015). Antimycobacterial and cytotoxicity activity of microcystins. J Venom Anim Toxins Incl Trop Dis. 21, 9.

Rao, M., Malhotra, S., Rattan, A. (2007). Antimycobacterial Activity from Cyanobacterial Extracts and Phytochemical Screening of Methanol Extract of Hapalosiphon. Pharmaceutical Biology. 45, 88–93.

Raveh, A., Carmeli, S. (2007). Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J. Nat. Prod. 70, 196–201.

Robles-Bañuelos, B., Durán-Riveroll, L.M., Rangel-López, E., Pérez-López, H.I., González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules. 27, 4814.

Rojas, V., Rivas, L., Cardenas, C., Guzman, F. (2020). Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules. 25, 5804.

Sainis, I., Fokas, D., Vareli, K.,  Tzakos, A. G., Kounnis, V., Briasoulis, E. (2010). Cyanobacterial Cyclopeptides as Lead Compounds to Novel Targeted Cancer Drugs. Mar Drugs. 8, 629–657.

Sawsan S. Al-Rawi, Ahmad Hamdy Ibrahim, Marthad A. Hamde, Dinesh Babu, Mansoureh Nazari, Mohd Omar Ab Kadir, Aman Shah Abdul Majid, Amin Malik Shah, (2023), Antiangiogenic and Anticancer Potential of Supercritical Fluid Extracts from Nutmeg Seeds; In vitro, Ex vivo and In silico studies, Journal of Angiotherpay, 7(1), 1-13, 9371.

Serrill, J.D., Wan, X., Hau, A.M., Jang, H.S., Coleman, D.J., Indra, A.K., Alani, A.W., McPhail, K.L., Ishmael, J.E. (2016). Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Investig. New Drugs. 34, 24–40.

Shalini, K., Kumar, N., Drabu, S., Sharma, P.K. (2011). Advances in synthetic approach to and antifungal activity of triazoles. Beilstein Journal of Organic Chemistry. 7, 668-677.

Shih, C.Y, Tzu-Ting Chan, T.T., Chen, C.L., Li, W.S. (2020). Antiangiogenic Effect of Isomalyngamide A Riboside CY01 in Breast Cancer Cells via Inhibition of Migration, Tube Formation and pVEGFR2/pAKT Signals. Anticancer Agents Med Chem. 20, 386-399.

Shishido, T.K., Humisto, A., Jokela, J., Liu, L., Wahlsten, M., Tamrakar, A., Fewer, D.P., Permi, P., Andreote, A.P.D., Flore, M.F., Sivonen, K. (2015). Antifungal Compounds from Cyanobacteria. Mar Drugs. 13, 2124–2140.

Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. (2021). Cancer Statistics, 2021. CA Cancer J Clin. 71, 7-33.

Simmons, T.L., Nogle, L.M., Media, J., Valeriote, F.A., Mooberry, S.L., Gerwick, W.H. (2009). Desmethoxymajusculamide C, a cyanobacterial depsipeptide with potent cytotoxicity in both cyclic and ring-opened forms. J. Nat. Prod. 72, 1011–1016.

Singh, I.P., Milligan, K.E., Gerwick, W.H. (1999). Tanikolide, a toxic and antifugal lactone from the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod. 62, 1333-1335.

Singh, R. K., Tiwari, S. P., Rai, A. K., Mohapatra, T. M. (2011). Cyanobacteria: an emerging source for drug discovery. J. Antibiot. 64, 401–412.

Skowron, K. J., Speltz, T. E., Moore, T. W. (2019). Recent structural advances in constrained helical peptides. Med. Res. Rev. 39, 749–770.

Srivastava, V.C., Manderson, G.J., Bhamidimarri, R. (1999). Inhibitory metabolites production by the cyanobacterium Fischerella muscicola. Microbiol. Res. 153, 309-317.

Sturdy, M., Krunic, A., Cho, S., Franzblau, S., Orjala, J. (2010). Eucapsitrione: an anti-Mycobacterium tuberculosis anthraquinone derivativefrom the cultured freshwater cyanobacterium Eucapsis sp. J. Nat. Prod. 73, 1441-1443.

Sumimoto, S., Iwasaki, A., Ohno, O., Sueyosh, K., Teruya, T., Suenaga, K. (2016). Kanamienamide, an Enamide with an Enol Ether from the Marine Cyanobacterium Moorea bouillonii. Org. Lett. 18, 4884–4887.

Swain, S.S., Paidesetty, S.K., Padhy, R.N. (2017). Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother. 90, 760-776.

Tan, L.T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 68, 954–979.

Tan, L.T. (2010). Filamentous tropical marine cyanobacteria: A rich source of natural products for anticancer drug discovery. J. Appl. Phycol. 22, 659–676.

Taori, K., Paul, V.J., Luesch, H. (2008). Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J. Nat. Prod. 71,1625–1629.

Tiwari, A.K., Tiwari, B.S. (2020). Cyanotherapeutics: an emerging field for future drug discovery. Applied phycology. 1, 1-14.

Tripathi, A., Fang, W., Leong, D.T., Tan, L.T. (2012).  Biochemical studies of the lagunamides, potent cytotoxic cyclic depsipeptides from the marine cyanobacterium Lyngbya majuscule. Mar Drugs. 10, 1126–1137.

Vestola, J., Shishido, T.K., Jokela, J., Fewer, D.P., Aitio, O., Permi, P., Wahlsten, M., Wang, H., Rouhiainen, L., Sivonen, K. (2014). Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci USA. 111, 1909-1917.

Vijayakumar, S., Menakha, M. (2015). Pharmaceutical applications of cyanobacteria- A review. Journal of acute medicine. 5, 15-23.

Volk, R.B., Furkert, F.H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161, 180-186.

Vorácová, K., Hájek, J., Mareš, J., Urajová, P., Kuzma, M., Cheel, J., Villunger, A., Kapuscik, A., Bally, M., Novák, P., Kabelác, M., Krumschnabel, G., Lukeš, M., Voloshko, L., Kopecký, J., Hrouzek, P. (2017). The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS One. 12, e0172850.

Wang, Y.J., Li, Y.Y., Liu, X.Y., Lu, X.L., Cao, X., Jiao, B.H. (2017). Marine Antibody–Drug Conjugates: Design Strategies and Research Progress. Mar Drugs. 15, 18.

Weiss, C., Figueras, E., Borbely, A.N., Sewald, N. (2017). Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. Journal of Peptide science. 23, 514-531.

Williams, P.G., Yoshida, W.Y., Moore, R.E., Paul, V.J. (2002). Tasiamide, a cytotoxic peptide from the marine cyanobacterium Symploca sp. J Nat Prod. 65, 1336-1339.

Williams, P.G., Yoshida, W.Y., Quon, M.K., Moore, R.E., Paul, V.J. (2003). Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J. Nat. Prod. 66, 651–654.

World Health Organization. (2019). Number of deaths due to HIV/AIDS. World Health Organization; Geneva, Switzerland.

Wrasidlo, W., Mielgo, A., Torres, V.A., Barbero, S., Stoletov, K., Suyama, T.L., Klemke, R.L., William H. Gerwick, W.H., Carson, D.A., Stupack, D.G. (2008). The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc Natl Acad Sci U S A. 105, 2313–2318.

Wright, A.D., Papendorf, O., Konig, G.M. (2005). Ambigol C and 2 4-dichlobenzoicacid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua. J. Nat. Prod. 68, 459-461.

Xiong, S., Fan, J., Kitazato, K. (2010). The antiviral protein cyanovirin-N: the current state of its production and applications. Applied Microbiology and Biotechnology. 86, 805-812.

Xu, S., Nijampatnam, B., Dutta, S., Velu, S. E. (2016). Cyanobacterial metabolite calothrixins: recent advances in synthesis and biological evaluation. Mar. Drugs. 14, 17.

Yamazaki, T., Kume, H., Murase, S., Yamashita, E., Arisawa, M. (1999). Epidemiology of visceral mycoses: Analysis of data in annual of the pathological autopsy cases in Japan. Journal of Clinical Microbiology. 37, 1732-1738.

Yu, H., Liu, Z., Lv, R., Zhang, W. (2010). Antiviral activity of recombinant cyanovirin-N against HSV-1. Virologica Sinica 25, 432-439.

Zanchett, G., Oliveira-Filho, E.C. (2013). Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins. 5, 1896–1917.

Zhang, F., Xu, X., Li, T., Liu Z., 2013. Shellfish toxins targeting voltage-gated sodium channels. Mar. Drugs. 11, 4698–4723.

Zhang, H., and Chen, S. (2022). Cyclic peptide drugs approved in the last two decades (2001–2021). RSC Chem. Biol. 3, 18–31.

Zou, B., Long, K., Ma, D.W. (2005). Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau’amide. Org. Lett. 7, 4237–4240.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
845
View
0
Share