EMAN RESEARCH PUBLISHING | <p>Cyanobacteria as a Source of Bioactive Compounds with Anticancer, Antibacterial, Antifungal, and Antiviral Activities: A Review</p>
MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
REVIEWS   (Open Access)

Cyanobacteria as a Source of Bioactive Compounds with Anticancer, Antibacterial, Antifungal, and Antiviral Activities: A Review

Reem Abdulsalam Dawood Al-Nedawe1 and Zetty Norhana Balia Yusof1,2,3 *

+ Author Affiliations

Microbial Bioactives 6 (1) 1-16 https://doi.org/10.25163/microbbioacts.617330

Submitted: 01 January 2023 Revised: 15 May 2023  Published: 05 August 2023 


Abstract

Cyanobacteria a group of photosynthetic microorganisms, exist in almost all ecosystems in the world. Regarding health and disease prevention, cyanobacteria have been cited as a promising natural source of diverse secondary metabolites that exhibit significant bioactivities with potential pharmacological uses. Presently, great attention has been concentrated on the anticancer role of aquatic cyanobacteria that comprise an important source of bioactive compounds. Cyanobacteria-derived natural compounds and their synthetic analogs exhibited attractive results and showed remarkable activity by reaching phase II and III clinical trials successfully. Therefore, natural products from cyanobacteria might represent promising sources for novel anticancer therapy. Besides, microbial infections and infectious diseases from antimicrobial resistance (AMR) pose a direct threat to health and well-being because of the increase in antimicrobial resistance and the evolution of novel pathogenic strains. The search for novel antibiotics become increasingly urgent. Extensive efforts have been invested to find antimicrobial compounds from cyanobacteria to limit the misuse of commercial antibiotics. The development of natural anticancer and antimicrobial compounds from fresh water and marine cyanobacterial metabolites is a valuable trial. This review article summarizes the reported anticancer, antiviral, antifungal, and antibacterial properties of cyanobacteria and their mechanisms of action.

Keywords: Anticancer; Antimicrobial; Bioactive compound; Cyanobacteria

References


Abed, R.M.M., Dobretsov, S., Sudesh, K. (2008). Applications of cyanobacteria in biotechnology. J Appl Microbiol. 106, 1-12.

https://doi.org/10.1111/j.1365-2672.2008.03918.x

PMid:19191979

 

Adams, C.P., Brantner, V.V. (2006). Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood). 25, 420-428.

https://doi.org/10.1377/hlthaff.25.2.420

PMid:16522582

 

Advani, R.H., Lebovic, D., Chen, A., Brunvand, M., Goy, A., Chang, J.E., Hochberg, E., Yalamanchili, S., Kahn, R., Lu, D., Agarwal, P., Dere, R.C., Hsieh, H.J., Jones, S., Chu, Y.W., Cheson, B.D. (2017). Phase I study of the anti-CD22 antibody-drug conjugate Pinatuzumab Vedotin with/without rituximab in patients with relapsed/refractory B-cell non-hodgkin lymphoma. Clin Cancer Res. 23, 1167-1176.

https://doi.org/10.1158/1078-0432.CCR-16-0772

PMid:27601593 PMCid:PMC6035878

 

Aesoy, R., Herfindal, L. (2022). Cyanobacterial anticancer compounds in clinical use: Lessons from the dolastatins and cryptophycins, in: Lopes, G., Silva, M., Vasconcelos, V. (Eds), The Pharmacological Potential of Cyanobacteria. Elsevier, Amsterdam, pp. 55-79.

https://doi.org/10.1016/B978-0-12-821491-6.00003-X

 

Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., Schenk, P.M. (2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal. 28, 1834-1841.

https://doi.org/10.1016/j.jsps.2020.11.010

PMid:33424272 PMCid:PMC7783216

 

Andrianasolo, S.L., Gross, H., Goeger, D., Musafija-Girt, M., McPhail, K., Leal, R.M., Mooberry, S.L., Gerwick, W.H. (2005). Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org. Lett. 7, 1375-1378.

https://doi.org/10.1021/ol050188x

PMid:15787510

 

Asthana, R.K., Srivastava, A., Singh, A.P., Deepali, Singh, S.P., Nath, G., Srivastava, R., Srivastava, B.S. (2006). Identification of an antimicrobial entity from Fischerella sp. colonizing neem tree bark. J. App. Phycol. 18, 33-39.

https://doi.org/10.1007/s10811-005-9011-9

 

Berry, J., Gantar, M., Gawley, R.E., Wang, M., Rein, K.S. (2004). Pharmacology and toxicology of phayokolide A, a bioactive metabolite from a fresh water species of Lyngbya isolated from the Florida everglades. Comp Biochem Physiol C Toxicol Pharmacol. 139, 231-238.

https://doi.org/10.1016/j.cca.2004.11.005

PMid:15683832 PMCid:PMC2573041

 

Bhadury, P., Wright, P.C. (2004). Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta. 219, 561-578.

https://doi.org/10.1007/s00425-004-1307-5

PMid:15221382

 

Boopathy, N.S., Kathiresan, K. (2010). Anticancer drugs from marine flora: An overview. Journal of oncology. 2010, 214186.

https://doi.org/10.1155/2010/214186

PMid:21461373 PMCid:PMC3065217

 

Bui, T.H., Wray, V., Nimtz, M., Fossen, T., Preisitsch, M., Schröder, G., Wende, K., Heiden, S.E., Mundt, S. Balticidins, A-D. (2014). Antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. J. Nat. Prod. 77, 1287-1296.

https://doi.org/10.1021/np401020a

PMid:24937366

 

Cardllina, J.H., Moore, R.E., Arnold, E.V., Clardy, J. (1979). Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula gomont. J. Org. Chem., 44, pp. 4039-4042.

https://doi.org/10.1021/jo01337a003

 

Carpine, R., Sieber, S. (2021). Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. Current Research in Biotechnology. 3, 65-81.

https://doi.org/10.1016/j.crbiot.2021.03.001

 

Chen, X., Smith, G.D., Waring, P. (2003). Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. Journal of Applied Phycology. 15, 269-277.

https://doi.org/10.1023/A:1025134106985

https://doi.org/10.1023/A:1026071714199

 

Choi, H., Engene, N., Jennifer E. Smith, J.E., Linda B. Preskitt, L.B., William H. Gerwick, W.H. (2010). Crossbyanols A-D, Toxic Brominated Polyphenyl Ethers from the Hawai'ian Bloom-Forming Cyanobacterium Leptolyngbya crossbyana. J Nat Prod. 73, 517-522.

 

https://doi.org/10.1021/np900661g

PMid:20170122 PMCid:PMC2859106

 

Costa, M., Rodrigues, J.C., Fernandes, M.H., Barron, P., Vasconcelos, V., Martin's, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Mar Drugs. 10, 2181-2207.

https://doi.org/10.3390/md10102181

PMid:23170077 PMCid:PMC3497016

 

Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infect and Drug Resist. 12, 3903-3910.

https://doi.org/10.2147/IDR.S234610

PMid:31908502 PMCid:PMC6929930

 

Damodaran, B., Nagaraja, P., Jain, V., Wimalasiri,,M.P.M.V., Sankolli, G.M., Kumar, G.V., Prabhu, V. (2019). Phytochemical Screening and Evaluation of Cytotoxic Activity of Calotropis gigantea Leaf Extract on MCF7, HeLa, and A549 Cancer Cell Lines. Journal of Natural Science, Biology and Medicine. 10, 131-138.

https://doi.org/10.4103/jnsbm.JNSBM_215_18

 

Davies-Coleman, M.T., Dzeha, T.M., Gray, C.A., Hess, S., Pannell L.K., Hendricks, D.T., Arendse, C.E. (2003). Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya Majuscula. J Nat Prod. 66, 712-715.

https://doi.org/10.1021/np030014t

PMid:12762816

 

Demay, J., Bernard, C., Reinhardt, A., Marie, B. (2019). Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs. 17, 320.

https://doi.org/10.3390/md17060320

PMid:31151260 PMCid:PMC6627551

 

De Oliveira, E.O., Graf, K.M., Patel, M.K., Baheti, A., Kong, H.S., MacArthur, L.H., Dakshanamurthy, S., Wang, K., Brown, M.L., Paige, M. (2011). Synthesis and evaluation of hermitamides A and B as human voltage-gated sodium channel blockers. Bioorganic medicinal chemistry. 19, 4322-4329.

https://doi.org/10.1016/j.bmc.2011.05.043

PMid:21683602 PMCid:PMC3134794

 

Dewi, I.C., Falaise, C., Hellio, C., Bourgougnon, N., Mouget, J.L. (2018). Anticancer, Antiviral, Antibacterial, and Antifungal Properties in Microalgae, in: Levine, I.A., Fleurence, J. (Eds.), Microalgae in Health and Disease Prevention. Elsevier, Amsterdam, pp. 235-261.

https://doi.org/10.1016/B978-0-12-811405-6.00012-8

 

Dey, B., Lerner, D.L., Lusso, P., Boyd, M.R., Elder, J.H., Berge,r E.A. (2000). Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol. 74, 4562-4569.

https://doi.org/10.1128/JVI.74.10.4562-4569.2000

PMid:10775592 PMCid:PMC111976

 

Dixit, R.B., Suseela, M.R. (2013). Cyanobacteria: Potential candidates for drug discovery. Antonie Van Leeuwenhoek. 103, 947-961.

https://doi.org/10.1007/s10482-013-9898-0

PMid:23532410

 

Doan, N.T., Stewart, P.R., Smith, G.D. (2001). Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol. Lett. 196, 135-139.

https://doi.org/10.1111/j.1574-6968.2001.tb10554.x

PMid:11267769

 

Dobretsov, S., Teplitski, M., Alagely, A., Gunasekera, S.P., Paul, V.J. (2010). Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry Environ. Microbiol. 2, pp. 739-744,

https://doi.org/10.1111/j.1758-2229.2010.00169.x

PMid:23766278

 

Dodds, W.K. (2002). Freshwater Ecology: Concepts and Environmental Applications, first ed. Elsevier, Amsterdam.

https://doi.org/10.1016/B978-012219135-0/50023-4

 

Dvorák, P., Poulícková, A., Hašler, P., Belli, M., Casamatta, D.A., Papini, A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation. 24, 739-757.

https://doi.org/10.1007/s10531-015-0888-6

 

Edwards, D.J., Marquez, B.L., Nogle, L.M., McPhail, K., Goeger, D.E., Roberts, M.A., Gerwick, W.H. (2004). Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol. 11, 817-33.

https://doi.org/10.1016/j.chembiol.2004.03.030

PMid:15217615

 

Ercolano, G., Chicco, P.D., Ianaro, A. (2019). New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar Drugs. 17, 31.

https://doi.org/10.3390/md17010031

PMid:30621025 PMCid:PMC6356258

 

Feng, S.S., Chien, S. (2003). Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci. 58, 4087-4114.

https://doi.org/10.1016/S0009-2509(03)00234-3

 

Ferdous, U.T., Yusof, Z.N.B. (2021). Medicinal Prospects of Antioxidants from Algal Sources in Cancer Therapy. Frontiers in Pharmacology. 12, 157.

https://doi.org/10.3389/fphar.2021.593116

PMid:33746748 PMCid:PMC7973026

 

Ferdous, U. T., & Yusof, Z. N.B. (2021). Insight into potential anticancer activity of algal flavonoids: current status and challenges. Molecules, 26(22), 6844.

https://doi.org/10.3390/molecules26226844

PMid:34833937 PMCid:PMC8618413

 

Ferdous, U. T., & Yusof, Z. N. B. (2021). Algal terpenoids: A potential source of antioxidants for cancer therapy. Terpenes and Terpenoids-Recent Advances, 63-76.

 

Ferdous, U. T., & Yusof, Z. N. B. (2022). Climate Change and Algal Communities. In Progress in Microalgae Research-A Path for Shaping Sustainable Futures. IntechOpen.

https://doi.org/10.5772/intechopen.104710

 

Frankmolle, P.W., Knuebel, G., Moore, E.R., Patterson, M.L.G. (1992). Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II. Structures of laxaphycins A, B, D and E. J Antibiot (Tokyo). 45, 1458-66.

https://doi.org/10.7164/antibiotics.45.1451

https://doi.org/10.7164/antibiotics.45.1458

PMid:1429232

 

Fuentes-Antrás, J., Genta, S., Vijenthira, A., Siu, L.L. (2023). Antibody-drug conjugates: in search of partners of choice. Trends in Cancer. 9, 339-354.

https://doi.org/10.1016/j.trecan.2023.01.003

PMid:36746689

 

Gademann, K., Portmann, C. (2008). Secondary metabolites from cyanobacteria: complex structure and powerful bioactivities. Curr Org Chem. 12, 326-341.

https://doi.org/10.2174/138527208783743750

 

Garrison, A.R., Giomarelli, B.G., Lear-Rooney, C.M., Saucedo, C.J., Yellayi, S., Krumpe, L.R.H., Rose, M., Paragas, J., Bray, M., Olinger, G.G., McMahon, J.B., Huggins, J., O'Keefe, B.R. (2014). The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Res. 0, 1-7.

https://doi.org/10.1016/j.antiviral.2014.09.012

PMid:25265598 PMCid:PMC4258435

 

Gesner-Apter, S., Carmeli, S. (2008). Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron. 64, 6628-6634.

https://doi.org/10.1016/j.tet.2008.05.031

 

Gheda, S.F., Ismail, G.A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. An Acad Bras Cienc. 92(2): e20190934.

https://doi.org/10.1590/0001-3765202020190934

PMid:32785444

 

Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G.M., Ioakeim, S., Zervou, S.K., Christophoridis, C., Triantis, T.M., Kaloudis, T., Hiskia, A., Arsenakis, M. (2019). Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. Toxins. 11, 436.

https://doi.org/10.3390/toxins11080436

PMid:31349572 PMCid:PMC6723990

 

Gupta, D.K., Kaur, P., Leong, S.T., Tan, L.T., Prinsep, M.R., Chu, J.J.H. (2014). Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum. Mar Drugs. 12, 115-127.

https://doi.org/10.3390/md12010115

PMid:24394406 PMCid:PMC3917264

 

Gutierrez, M., Tidgewell, K., Capson, T.L., Engene, N., Almanza, A., Schemies, J., Jung, M., Gerwick, W.H. (2010). Malyngolide dimer, a bioactive symmetric cyclodepside from the panamanian marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 73, 709-711.

https://doi.org/10.1021/np9005184

PMid:20158242 PMCid:PMC2859090

 

Han, B., Gross, H., Goeger, D.E., Mooberry, S.L., Gerwick, W.H. (2006). Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscule. J Nat Prod. 69, 572-5.

https://doi.org/10.1021/np0503911

PMid:16643028

 

Han, B., McPhail, K., Gross, H., Goeger, D.E., Mooberry, S.L., Gerwick, W.H. (2005). Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marinen cyanobacterium Lyngbya majuscula. Tetrahedron. 61, 11723-11729.

https://doi.org/10.1016/j.tet.2005.09.036

 

Han, B.N., Liang, T.T., Keen, L.J., Fan, T.T., Zhang, X.D., Xu, L., Zhao, Q., Wang, S.P., Lin, H.W. (2018). Two Marine Cyanobacterial Aplysiatoxin Polyketides, Neodebromoaplysiatoxin A and B, with K+ Channel Inhibition Activity. Org Lett. 20, 578-581.

https://doi.org/10.1021/acs.orglett.7b03672

PMid:29345130

 

Hao, S., Yan, Y., Li, S., Zhao, L., Zhang, C., Liu, L., Wang, C. (2018). The In Vitro Anti-Tumor Activity of Phycocyanin against Non-Small Cell Lung Cancer Cells. Mar Drugs. 16, 178.

https://doi.org/10.3390/md16060178

PMid:29882874 PMCid:PMC6025048

 

Hatae, N., Satoh, R., Chiba, H., Osaki, T., Nishiyama, T., Ishikura, M., Abe, T., Hibino, S., Choshi, T., Okada, C., Toyota, E. (2014). N-Substituted calothrixin B derivatives inhibited the proliferation of HL-60 promyelocytic leukemia cells. Medicinal Chemistry Research. 23, 4956-4961.

https://doi.org/10.1007/s00044-014-1061-6

 

Hayashi, T., Hayashi, K., Maeda, M., Kojima, I. (1996). Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod. 59, 83-87.

https://doi.org/10.1021/np960017o

PMid:8984158

 

Hemscheidt, T., Puglisi, M.P., Larsen, L.K., Patterson, G.M.L., Moore, R.E., Rios, J.L., Clardy, J. (1994). Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. J. Org. Chem. 59, 3467-3471.

https://doi.org/10.1021/jo00091a042

 

Hirata, K., Yoshitomi, S., Dwi, S., Iwabe, O., Mahakhant, A., Polchai, J., Miyamoto, K. (2003). Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J. Biosci Bioeng. 95, 512-517.

https://doi.org/10.1016/S1389-1723(03)80053-1

PMid:16233448

 

Hong, J., Luesch, H. (2012). Largazole: from discovery to broad-spectrum therapy. J Nat Prod. 4, 449-456.

https://doi.org/10.1039/c2np00066k

PMid:22334030 PMCid:PMC4777309

 

Horgen, F.D., Kazmierski, E.B., Westenburg, H.E., Yoshida, W.Y., Scheuer, P.J. (2002). Malevamide D: isolation and structure determination of an isodolastatin H analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod. 65, 487-491.

https://doi.org/10.1021/np010560r

PMid:11975485

 

Humisto, A., Jokela, J., Teigen, K., Wahlsten, M., Permi, P., Sivonen, K., Herfindal, L. (2019). Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochim Biophys Acta Biomembr. 1861, 1510-1521.

https://doi.org/10.1016/j.bbamem.2019.03.010

PMid:31226245

 

Jaki, B., Orjala, J., Heilmann, J., Linden, A., Vogler, B., Sticher, O. (2000). Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod. 63, 339-343.

https://doi.org/10.1021/np9903090

PMid:10757714

 

Jiang, L., Wang, Y., Liu, G., Liu, H., Zhu, F., Ji, H., Li, B. (2018). C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int. 18, 12.

https://doi.org/10.1186/s12935-018-0511-5

PMid:29416441 PMCid:PMC5785878

 

Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., Li, B. (2017). Phycocyanin: A Potential Drug for Cancer Treatment. Journal of Cancer. 8, 3416-3429.

https://doi.org/10.7150/jca.21058

PMid:29151925 PMCid:PMC5687155

 

Kailash, J., Ragini, G., AS, Y. (2022). Microcystin-LR exhibit cytotoxicity in Myeloma Sp2/01

 

cancer cell line and emerging as a potential anticancer therapeutics. International Journal of Biotech Trends and Technology. 12, 18-30.

 

Kang, H.K., Choi, M.C., Seo, C.H., Park, Y. (2018). Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int. J. Mol. Sci. 19, 919.

https://doi.org/10.3390/ijms19030919

PMid:29558431 PMCid:PMC5877780

 

Kapoor, S.S. (2013). Dolastatin 15 and its emerging antineoplastic effects. European Journal of Cancer Prevention. 22, 486-487.

https://doi.org/10.1097/CEJ.0b013e32835de84e

PMid:23900223

 

Kar, J., Ramrao, D.P., Zomuansangi, R., Lalbiaktluangi, C., Singh, S.M., Joshi, N.C., Kumar, A., Kaushalendra, Mehta, S., Yadav, M.K., Singh, P.K. (2022). Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front. Microbiol. 13, 1034471.

https://doi.org/10.3389/fmicb.2022.1034471

PMid:36466636 PMCid:PMC9717611

 

Khalifa, S.A.M., Elias, N., Mohamed A. Farag, M.A., Chen, L., Saeed, A., Hegazy, M.E.F., Moustafa, M.S., Abd El-Wahed, A., Al-Mousawi, S.M., Musharraf, S.G., Chang, F.R., Iwasaki, A., Suenaga, K., Alajlani, M., Göransson, U., El-Seedi, H.R. (2019). Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs. 17, 491.

https://doi.org/10.3390/md17090491

PMid:31443597 PMCid:PMC6780632

 

Kounnis, V., Chondrogiannis, G., Mantzaris, M.D., Tzakos, A.G., Fokas, D., Papanikolaou, N.A., Galani, V., Sainis, I., Briasoulis, E. (2015). Microcystin LR Shows Cytotoxic Activity Against Pancreatic Cancer Cells Expressing the Membrane OATP1B1 and OATP1B3 Transporters. Anticancer Res. 35, 5857-65.

 

Kultschar, B., Llewellyn, C. (2018). Secondary metabolites in cyanobacteria, in: Vijayakumar, R., Raja, S. (Eds.), In Secondary Metabolites-Sources and Applications. IntechOpen, London, pp. 23-36.

https://doi.org/10.5772/intechopen.75648

 

Kumla, D., Sousa, M.E., Vasconcelos, V., Kijjoa, A. (2022). Specialized metabolites from cyanobacteria and their biological activities, in: Lopes, G., Silva, M., Vasconcelos, V. (Eds.), The Pharmacological Potential of Cyanobacteria. Elsevier, Amsterdam, pp. 21-54.

https://doi.org/10.1016/B978-0-12-821491-6.00002-8

 

Kwan, J.C., Eksioglu, E.A., Liu, C., Paul, V.J., Luesch, H. (2009). Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. Journal of Medicinal Chemistry. 52, 5732-5747.

https://doi.org/10.1021/jm9009394

PMid:19715320 PMCid:PMC2756064

 

Larsen, L.K., Moore, R.E., Patterson, G.M. (1994). Beta-carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod. 57, 419-421.

https://doi.org/10.1021/np50105a018

PMid:8201316

 

Li, B., Zhang, X., Gao, M., Chu, X. (2005). Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomedicine & pharmacotherapy. 59, 551-60.

https://doi.org/10.1016/j.biopha.2005.06.012

PMid:16271846

 

Luesch, H., Chanda, S.K., Raya, R.M., DeJesus, P.D., Orth, A.P., Walker, J.R., Izpisua Belmonte, J.C., Schultz, P.G. (2006). A functional genomics approach to the mode of action of apratoxin A. Nat. Chem. Biol. 2, 158-167.

https://doi.org/10.1038/nchembio769

PMid:16474387

 

Luesch, H., Pangilinan, R., Yoshida, W.Y., Moore, R.E., Paul, V.J. (2001). Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya Majuscula. J Nat Prod. 64, 304-307.

https://doi.org/10.1021/np000456u

PMid:11277744

 

MacMillan, J.B., Molinski, T.F. (2005). Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod. 68, 604-606.

https://doi.org/10.1021/np049596k

PMid:15844960

 

Malloy, K.L., Villa, F.A., Engene, N., Matainaho, T., Berwick, L., Gerwick, W.H. (2011). Malyngamide 2, an Oxidized Lipopeptide with Nitric Oxide Inhibiting Activity from a Papua New Guinea Marine Cyanobacterium. J Nat Prod. 74, 95-98.

https://doi.org/10.1021/np1005407

PMid:21155594 PMCid:PMC3227558

 

Marquez, B.L., Watts, K.S., Yokochi, A., Roberts, M.A., Verdier-Pinard, P., Jimenez, J.I., Hamel, E., Scheuer, P.J., Gerwick, W.H. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod. 65, 866-871.

https://doi.org/10.1021/np0106283

PMid:12088429

 

Martins, D.O.S., Santos, I.A., Oliveira, D.M., Grosche, V.R., Jardim, A.C.G. (2020). Antivirals Against Chikungunya Virus: Is the Solution in Nature? Viruses. 12, 272.

https://doi.org/10.3390/v12030272

PMid:32121393 PMCid:PMC7150839

 

Mason, C.P., Edward, K.R., Carlson, R.E., Pignatello, J., Gleason, F.K., Wood, J.M. (1982). Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science. 215, 400-2.

https://doi.org/10.1126/science.6800032

PMid:6800032

 

Matei, E., Basu, R., Furey, W., Shi J., Calnan, C., Aiken, C., Gronenborn, A.M. (2016). Structure and glycan binding of a new cyanovirin-N homolog. J Biol Chem. 291, 18967-18976.

https://doi.org/10.1074/jbc.M116.740415

PMid:27402833 PMCid:PMC5009269

 

Matthew, S., Schupp, P.J., Luesch, H. (2008). Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 71, 113-1116.

https://doi.org/10.1021/np700717s

PMid:18461997

 

Matthew, S., Paul, V.J., Luesch, H. (2009). Tiglicamides A-C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry. 70, 2058-2063.

https://doi.org/10.1016/j.phytochem.2009.09.010

PMid:19815244 PMCid:PMC2787822

 

Matthew, S., Ross, C., Rocca, J.R., Paul, V.J. (2007). Luesch, H. Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J. Nat. Prod. 70, 124-127.

https://doi.org/10.1021/np060471k

PMid:17253864

 

McFeeters, R.L., Xiong, C., O'Keefe, B.R., Bokesch, H.R., McMahon, J.B., Ratner, D.M., Castelli, R., Seeberger, P.H., Byrd, R.A. (2007). The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol. 369, 451-461.

https://doi.org/10.1016/j.jmb.2007.03.030

PMid:17434526 PMCid:PMC2696897

 

Mimouni, V., Ulmann, L., Pasquet, V., Mathieu, M., Picot, L., Bougaran, G., Cadoret, J.P., Morant-Manceau, A., Schoefs, B. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol. 13, 2733-2750.

https://doi.org/10.2174/138920112804724828

PMid:23072388

 

Mo, S., Krunic, A., Chlipala, G., Orjal, J. (2009). Antimicrobial ambiguine isonitriles from the cyanobacteium Fischerella ambigua. J Nat Prod. 72, 894-899.

https://doi.org/10.1021/np800751j

PMid:19371071 PMCid:PMC2765494

 

Mondal, A., Bose, S., Banerjee, S., Patra, J.K., Malik, J., Mandal, S.K., Kilpatrick, K.L., Das, G., Kerry, R.G., Fimognari, C., Bishayee, A. (2020). Marine Cyanobacteria and Microalgae Metabolites-A Rich Source of Potential Anticancer Drugs. Mar Drugs. 18, 476.

https://doi.org/10.3390/md18090476

PMid:32961827 PMCid:PMC7551136

 

Montaser, R., Abboud, K.A., Paul, V.J., Luesch, H. (2011). Pitiprolamide, a prolinerich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscule from Guam. J Nat Prod. 74, 109-112.

https://doi.org/10.1021/np1006839

PMid:21138309 PMCid:PMC3070785

 

Mooberry, S.L., Leal, R.M., Tinley, T.L., Luesch, H., Moore, R.E., Corbett, T.H. (2003). The molecular pharmacology of symplostatin 1: a new antimitotic dolastatin 10 analog. International Journal of Cancer. 104, 512-21.

https://doi.org/10.1002/ijc.10982

PMid:12584751

 

Moon, S.S., Chen, J.L., Moore, R.E. (1992). Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J Org Chem. 57, 1097-1103.

https://doi.org/10.1021/jo00030a013

 

Moore, E.R., Patterson, G.M.L., Carmichael, W.W. (1988). New pharmaceuticals from cultured blue-green alga. Mem Cal Acad Sci. 13:145-150.

 

Morlière, P., Mazière, J.C., Santus, R., Smith, C.D., Prinsep, M.R., Stobbe, C.C., Fenning, M.C., Golberg, J.L., Chapman, J.D. (1998). Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res. 58, 3571-3578.

 

Moulaei, T, Botos, I., Ziolkowska, N.E., Bokesch, H.R., Krumpe, L.R., Mckee, T.C., O'keefe, B.R., Dauter, Z., Wlodawer, A. (2007). Atomic-resolution crystal structure of the antiviral lectin scytovirin. Protein Sci. 16, 2756-2760.

https://doi.org/10.1110/ps.073157507

PMid:17965185 PMCid:PMC2222830

 

Mundt, S., Kreitlow, S., Jansen, R. (2003). Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB051. Journal of Applied Phycology. 15, 263-267.

https://doi.org/10.1023/A:1023889813697

 

Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I. V., Ninova, M.S., Kussovski, V.K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Technol. 48, 1533-1540.

https://doi.org/10.1111/ijfs.12122

 

Nakagawa, Y., Yanagita, R.C., Hamada, N., Murakami, A., Takahashi, H., Saito, N., Nagai, H., Irie, K. (2009). A simple analogue of tumor-promoting aplysiatoxin is an antineoplastic agent rather than a tumor promoter: development of a synthetically accessible protein kinase C activator with bryostatin-like activity. Journal of the American Chemical Society. 131, 7573-7579.

https://doi.org/10.1021/ja808447r

PMid:19449873

 

Nandagopal, P., Steven, A.N., Chan, L.W., Rahmat, Z., Jamaluddin, H., Noh, N.I.M. (2021). Bioactive metabolites produced by cyanobacteria for growth adaptation and their pharmacological properties. Biology. 10, 1061.

https://doi.org/10.3390/biology10101061

PMid:34681158 PMCid:PMC8533319

 

Nigam, M., Suleria, H.A.R., Farzaei, M.H., Mishra, A.P. (2019). Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru. 27, 491-515.

https://doi.org/10.1007/s40199-019-00273-4

PMid:31165439 PMCid:PMC6593002

 

Niveshika, E., Verma, A.K., Mishra, A.K., Singh, V.K. (2016). Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostoc sp. MGL001. Front. Microbiol. 7, 1899.

https://doi.org/10.3389/fmicb.2016.01899

PMid:27965634 PMCid:PMC5126090

 

Nowruzi, B., Bouaïcha, N., Metcalf, J.S., Porzani, S.J., Konur, O. (2021). Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry. 192, 112959.

https://doi.org/10.1016/j.phytochem.2021.112959

PMid:34649057

 

Nowruzi, B., Wahlsten, M., Jokela, J. (2019). A Report on Finding a New Peptide Aldehyde from Cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey's Analysis. Iran J Biotechnol. 17(2):e1853.

https://doi.org/10.21859/ijb.1853

PMid:31457050 PMCid:PMC6697839

 

Osman, N.A.H.K., Siam, A.A., El-Manawy, I. M., Jeon, Y.J. (2020). Anticancer activity of a scarcely investigated Red Sea Alga Hormophysa cuneiformis against HL60, A549, HCT116 and B16 cell lines. Egyptian Journal of Aquatic Biology and Fisheries. 24, 497-508.

https://doi.org/10.21608/ejabf.2020.75087

 

Ott, P.A., Pavlick, A.C., Johnson, D.B., Hart, L.L., Infante, J.R., Luke, J.J., Lutzky, J., Rothschild, N., Cowey, C.L., Alizadeh, A., Salama, A., He, Y., Bagley, R.G., Zhang, J., Hamid, O. (2017). A phase II study of glembatumumab vedotin (GV), an antibody-drug conjugate (ADC) targeting gpNMB, in advanced melanoma. J Clin Oncol. 35, 109.

https://doi.org/10.1200/JCO.2017.35.15_suppl.109

 

Pandy, V.D. (2015). Cyanobacterial natural products as antimicrobial agents. Inter J Curr Microbiol Appl Sci. 4, 310-317.

 

Pereira, R.B., Evdokimov, N.M., Lefranc, F., Valentão, P., Kornienko, A., Pereira, D.M., Andrade, P.B., Gomes, N.G.M. (2019). Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar. Drugs. 17, 329.

https://doi.org/10.3390/md17060329

PMid:31159480 PMCid:PMC6627313

 

Polyzois, A., Kirilovsky, D., Dufat, T., Michel, S. (2020). Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. Toxins. 12, 809.

https://doi.org/10.3390/toxins12120809

PMid:33371249 PMCid:PMC7766261

 

Preisitsch, M., Harmrolfs, K., Pham, H.T., Heiden, S.E., Füssel, A., Wiesner, C., Pretsch, A., Swiatecka-Hagenbruch, M., Niedermeyer, T.H., Müller, R., Mundt, S. (2015). Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J. Antibiot. 68, 165-177.

https://doi.org/10.1038/ja.2014.118

PMid:25182484

 

Prestinaci, F., Pezzotti, P., Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 109, 309-318.

https://doi.org/10.1179/2047773215Y.0000000030

PMid:26343252 PMCid:PMC4768623

 

Prinsep, M.R., Caplan, F.R., Moore, R.E., Patterson, G.M.L., Smith, C.D. (1992). Tolyporphin: a novel multidrug resistance reversing agent from blue- green alga Tolypothrix nodosa. J. Am. Chem. Soc. 114, 385-387.

https://doi.org/10.1021/ja00027a072

 

Pumiputavon, K., Chaowasku, T., Saenjum, C., Osathanunkul, M., Wungsintaweekul, B., Chawansuntati, K., Wipasa, J., Lithanatudom, P. (2017). Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complementary Altern Med. 17, 294.

https://doi.org/10.1186/s12906-017-1811-3

PMid:28583139 PMCid:PMC5460496

 

Qamar, H., Hussain, K., Soni, A., Hussain, T., Chenais, B. (2021). Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovectors. Molecules. 26, 247.

https://doi.org/10.3390/molecules26010247

PMid:33466486 PMCid:PMC7796498

 

Ramaswam, A.V., Sorrels, C.M., Gerwick, W.H. (2007). Cloning and Biochemical Characterization of the Hectochlorin Biosynthetic Gene Cluster from the Marine Cyanobacterium Lyngbya majuscule. J. Nat. Prod. 70, 1977-1986.

https://doi.org/10.1021/np0704250

PMid:18001088

 

Ramos, D.F., Matthiensen, A., Colvara, W., de Votto, A.P.S., Trindade, G.S., da Silva, P.E.A., Yunes, J.S. (2015). Antimycobacterial and cytotoxicity activity of microcystins. J Venom Anim Toxins Incl Trop Dis. 21, 9.

https://doi.org/10.1186/s40409-015-0009-8

PMid:25802510 PMCid:PMC4369887

 

Rao, M., Malhotra, S., Rattan, A. (2007). Antimycobacterial Activity from Cyanobacterial Extracts and Phytochemical Screening of Methanol Extract of Hapalosiphon. Pharmaceutical Biology. 45, 88-93.

https://doi.org/10.1080/13880200601105319

 

Raveh, A., Carmeli, S. (2007). Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J. Nat. Prod. 70, 196-201.

https://doi.org/10.1021/np060495r

PMid:17315959

 

Robles-Bañuelos, B., Durán-Riveroll, L.M., Rangel-López, E., Pérez-López, H.I., González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules. 27, 4814.

https://doi.org/10.3390/molecules27154814

PMid:35956762 PMCid:PMC9369884

 

Rojas, V., Rivas, L., Cardenas, C., Guzman, F. (2020). Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules. 25, 5804.

https://doi.org/10.3390/molecules25245804

PMid:33316949 PMCid:PMC7763478

 

Sainis, I., Fokas, D., Vareli, K., Tzakos, A. G., Kounnis, V., Briasoulis, E. (2010). Cyanobacterial Cyclopeptides as Lead Compounds to Novel Targeted Cancer Drugs. Mar Drugs. 8, 629-657.

https://doi.org/10.3390/md8030629

PMid:20411119 PMCid:PMC2857373

 

Serrill, J.D., Wan, X., Hau, A.M., Jang, H.S., Coleman, D.J., Indra, A.K., Alani, A.W., McPhail, K.L., Ishmael, J.E. (2016). Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Investig. New Drugs. 34, 24-40.

https://doi.org/10.1007/s10637-015-0303-x

PMid:26563191

 

Shalini, K., Kumar, N., Drabu, S., Sharma, P.K. (2011). Advances in synthetic approach to and antifungal activity of triazoles. Beilstein Journal of Organic Chemistry. 7, 668-677.

https://doi.org/10.3762/bjoc.7.79

PMid:21804864 PMCid:PMC3135122

 

Shih, C.Y, Tzu-Ting Chan, T.T., Chen, C.L., Li, W.S. (2020). Antiangiogenic Effect of Isomalyngamide A Riboside CY01 in Breast Cancer Cells via Inhibition of Migration, Tube Formation and pVEGFR2/pAKT Signals. Anticancer Agents Med Chem. 20, 386-399.

https://doi.org/10.2174/1871520619666191019123244

PMid:31629398

 

Shishido, T.K., Humisto, A., Jokela, J., Liu, L., Wahlsten, M., Tamrakar, A., Fewer, D.P., Permi, P., Andreote, A.P.D., Flore, M.F., Sivonen, K. (2015). Antifungal Compounds from Cyanobacteria. Mar Drugs. 13, 2124-2140.

https://doi.org/10.3390/md13042124

PMid:25871291 PMCid:PMC4413203

 

Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. (2021). Cancer Statistics, 2021. CA Cancer J Clin. 71, 7-33.

https://doi.org/10.3322/caac.21654

PMid:33433946

 

Simmons, T.L., Nogle, L.M., Media, J., Valeriote, F.A., Mooberry, S.L., Gerwick, W.H. (2009). Desmethoxymajusculamide C, a cyanobacterial depsipeptide with potent cytotoxicity in both cyclic and ring-opened forms. J. Nat. Prod. 72, 1011-1016.

https://doi.org/10.1021/np9001674

PMid:19489598 PMCid:PMC2857713

 

Singh, I.P., Milligan, K.E., Gerwick, W.H. (1999). Tanikolide, a toxic and antifugal lactone from the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod. 62, 1333-1335.

https://doi.org/10.1021/np990162c

PMid:10514329

 

Singh, R. K., Tiwari, S. P., Rai, A. K., Mohapatra, T. M. (2011). Cyanobacteria: an emerging source for drug discovery. J. Antibiot. 64, 401-412.

https://doi.org/10.1038/ja.2011.21

PMid:21468079

 

Skowron, K. J., Speltz, T. E., Moore, T. W. (2019). Recent structural advances in constrained helical peptides. Med. Res. Rev. 39, 749-770.

https://doi.org/10.1002/med.21540

PMid:30307621 PMCid:PMC7395366

 

Srivastava, V.C., Manderson, G.J., Bhamidimarri, R. (1999). Inhibitory metabolites production by the cyanobacterium Fischerella muscicola. Microbiol. Res. 153, 309-317.

https://doi.org/10.1016/S0944-5013(99)80043-3

PMid:10052156

 

Sturdy, M., Krunic, A., Cho, S., Franzblau, S., Orjala, J. (2010). Eucapsitrione: an anti-Mycobacterium tuberculosis anthraquinone derivativefrom the cultured freshwater cyanobacterium Eucapsis sp. J. Nat. Prod. 73, 1441-1443.

https://doi.org/10.1021/np100299v

PMid:20795743 PMCid:PMC2972581

 

Sumimoto, S., Iwasaki, A., Ohno, O., Sueyosh, K., Teruya, T., Suenaga, K. (2016). Kanamienamide, an Enamide with an Enol Ether from the Marine Cyanobacterium Moorea bouillonii. Org. Lett. 18, 4884-4887.

https://doi.org/10.1021/acs.orglett.6b02364

PMid:27623268

 

Swain, S.S., Paidesetty, S.K., Padhy, R.N. (2017). Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother. 90, 760-776.

https://doi.org/10.1016/j.biopha.2017.04.030

PMid:28419973

 

Tan, L.T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 68, 954-979.

https://doi.org/10.1016/j.phytochem.2007.01.012

PMid:17336349

 

Tan, L.T. (2010). Filamentous tropical marine cyanobacteria: A rich source of natural products for anticancer drug discovery. J. Appl. Phycol. 22, 659-676.

https://doi.org/10.1007/s10811-010-9506-x

 

Taori, K., Paul, V.J., Luesch, H. (2008). Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J. Nat. Prod. 71,1625-1629.

https://doi.org/10.1021/np8002172

PMid:18693761

 

Tiwari, A.K., Tiwari, B.S. (2020). Cyanotherapeutics: an emerging field for future drug discovery. Applied phycology. 1, 1-14.

https://doi.org/10.1080/26388081.2020.1744480

 

Tripathi, A., Fang, W., Leong, D.T., Tan, L.T. (2012). Biochemical studies of the lagunamides, potent cytotoxic cyclic depsipeptides from the marine cyanobacterium Lyngbya majuscule. Mar Drugs. 10, 1126-1137.

https://doi.org/10.3390/md10051126

PMid:22822361 PMCid:PMC3397452

 

Vestola, J., Shishido, T.K., Jokela, J., Fewer, D.P., Aitio, O., Permi, P., Wahlsten, M., Wang, H., Rouhiainen, L., Sivonen, K. (2014). Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci USA. 111, 1909-1917.

https://doi.org/10.1073/pnas.1320913111

PMid:24742428 PMCid:PMC4020101

 

Vijayakumar, S., Menakha, M. (2015). Pharmaceutical applications of cyanobacteria- A review. Journal of acute medicine. 5, 15-23.

https://doi.org/10.1016/j.jacme.2015.02.004

 

Volk, R.B., Furkert, F.H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161, 180-186.

https://doi.org/10.1016/j.micres.2005.08.005

PMid:16427523

 

Vorácová, K., Hájek, J., Mareš, J., Urajová, P., Kuzma, M., Cheel, J., Villunger, A., Kapuscik, A., Bally, M., Novák, P., Kabelác, M., Krumschnabel, G., Lukeš, M., Voloshko, L., Kopecký, J., Hrouzek, P. (2017). The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS One. 12, e0172850.

https://doi.org/10.1371/journal.pone.0172850

PMid:28253280 PMCid:PMC5333925

 

Wang, Y.J., Li, Y.Y., Liu, X.Y., Lu, X.L., Cao, X., Jiao, B.H. (2017). Marine Antibody-Drug Conjugates: Design Strategies and Research Progress. Mar Drugs. 15, 18.

https://doi.org/10.3390/md15010018

PMid:28098746 PMCid:PMC5295238

 

Weiss, C., Figueras, E., Borbely, A.N., Sewald, N. (2017). Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. Journal of Peptide science. 23, 514-531.

https://doi.org/10.1002/psc.3015

PMid:28661555

 

Williams, P.G., Yoshida, W.Y., Moore, R.E., Paul, V.J. (2002). Tasiamide, a cytotoxic peptide from the marine cyanobacterium Symploca sp. J Nat Prod. 65, 1336-1339.

https://doi.org/10.1021/np020184q

PMid:12350160

 

Williams, P.G., Yoshida, W.Y., Quon, M.K., Moore, R.E., Paul, V.J. (2003). Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J. Nat. Prod. 66, 651-654.

https://doi.org/10.1021/np020582t

https://doi.org/10.1021/np030050s

https://doi.org/10.1021/np034001r

 

World Health Organization. (2019). Number of deaths due to HIV/AIDS. World Health Organization; Geneva, Switzerland.

 

Wrasidlo, W., Mielgo, A., Torres, V.A., Barbero, S., Stoletov, K., Suyama, T.L., Klemke, R.L., William H. Gerwick, W.H., Carson, D.A., Stupack, D.G. (2008). The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc Natl Acad Sci U S A. 105, 2313-2318.

https://doi.org/10.1073/pnas.0712198105

PMid:18268346 PMCid:PMC2268133

 

Wright, A.D., Papendorf, O., Konig, G.M. (2005). Ambigol C and 2 4-dichlobenzoicacid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua. J. Nat. Prod. 68, 459-461.

https://doi.org/10.1021/np049640w

PMid:15787461

 

Xiong, S., Fan, J., Kitazato, K. (2010). The antiviral protein cyanovirin-N: the current state of its production and applications. Applied Microbiology and Biotechnology. 86, 805-812.

https://doi.org/10.1007/s00253-010-2470-1

PMid:20162270

 

Xu, S., Nijampatnam, B., Dutta, S., Velu, S. E. (2016). Cyanobacterial metabolite calothrixins: recent advances in synthesis and biological evaluation. Mar. Drugs. 14, 17.

https://doi.org/10.3390/md14010017

PMid:26771620 PMCid:PMC4728514

 

Yamazaki, T., Kume, H., Murase, S., Yamashita, E., Arisawa, M. (1999). Epidemiology of visceral mycoses: Analysis of data in annual of the pathological autopsy cases in Japan. Journal of Clinical Microbiology. 37, 1732-1738.

https://doi.org/10.1128/JCM.37.6.1732-1738.1999

PMid:10325316 PMCid:PMC84937

 

Yu, H., Liu, Z., Lv, R., Zhang, W. (2010). Antiviral activity of recombinant cyanovirin-N against HSV-1. Virologica Sinica 25, 432-439.

https://doi.org/10.1007/s12250-010-3131-3

PMid:21221922 PMCid:PMC8227942

 

Zanchett, G., Oliveira-Filho, E.C. (2013). Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins. 5, 1896-1917.

https://doi.org/10.3390/toxins5101896

PMid:24152991 PMCid:PMC3813918

 

Zhang, F., Xu, X., Li, T., Liu Z., 2013. Shellfish toxins targeting voltage-gated sodium channels. Mar. Drugs. 11, 4698-4723.

https://doi.org/10.3390/md11124698

PMid:24287955 PMCid:PMC3877881

 

Zhang, H., and Chen, S. (2022). Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem. Biol. 3, 18-31.

https://doi.org/10.1039/D1CB00154J

PMid:35128405 PMCid:PMC8729179

 

Zou, B., Long, K., Ma, D.W. (2005). Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau'amide. Org. Lett. 7, 4237-4240.

https://doi.org/10.1021/ol051685g

PMid:16146396

Committee on Publication Ethics

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
339
View

Share