Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., ... & Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350–E4357. https://doi.org/10.1073/pnas.1718804115
Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384. https://doi.org/10.1016/S0168-6445(03)00046-9
Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behavior. Nature Reviews Neuroscience, 13(10), 701–712. https://doi.org/10.1038/nrn3346
Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 1–13. https://doi.org/10.4061/2011/941810
Endersen, L., O'Mahony, J., Hill, C., Ross, R. P., McAuliffe, O., & Coffey, A. (2014). Phage therapy in the food industry. Annual Review of Food Science and Technology, 5, 327–349. https://doi.org/10.1146/annurev-food-030713-092415
Fleet, G. H. (2007). Yeasts in foods and beverages: Impact on product quality and safety. Current Opinion in Biotechnology, 18(2), 170–175. https://doi.org/10.1016/j.copbio.2007.01.010
Frias, J., Doblado, R., Antezana, J. R., & Vidal-Valverde, C. (2017). Fermented pulses: Nutritional value and potential for utilization in food production. Critical Reviews in Food Science and Nutrition, 57(2), 325–338.
Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643. https://doi.org/10.1099/mic.0.037143-0
Gareau, M. G., Sherman, P. M., & Walker, W. A. (2010). Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 7(9), 503–514. https://doi.org/10.1038/nrgastro.2010.117
Gentry, T. J., Rensing, C., & Pepper, I. L. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology, 34(5), 447–494. https://doi.org/10.1080/10643380490452362
Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., Andersen, G. L., Piceno, Y. M., Singh, N., ... & Mason, O. U. (2010). Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001), 204–208. https://doi.org/10.1126/science.1195979
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., ... & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
Jespersen, L. (2003). Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Research, 3(2), 191–200. https://doi.org/10.1016/S1567-1356(02)00185-X
Kim, D. J., Kim, S. H., & Lee, D. I. (2006). Nitrification of high-strength ammonia wastewater and nitrite accumulation characteristics. Environmental Technology, 27(3), 277–284.
Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8(3), 285–289. https://doi.org/10.1016/S0958-1669(97)80005-5
Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms (15th ed.). Pearson.
Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., ... & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010
Ouwehand, A. C., Salminen, S., & Isolauri, E. (2002). Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek, 82(1), 279–289. https://doi.org/10.1023/A:1020620607611
Prince, R. C., Gramain, A., & Atlas, R. M. (2010). Bioremediation of marine oil spills. In Oil Spill Science and Technology (pp. 395–412). https://doi.org/10.1007/978-3-540-77587-4_194
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: Principles and applications. McGraw-Hill.
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., ... & Griffin, P. M. (2011). Foodborne illness acquired in the United States – Major pathogens. Emerging Infectious Diseases, 17(1), 7–15. https://doi.org/10.3201/eid1701.P11101
Settanni, L., & Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 121(2), 123–138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
Steensels, J., & Verstrepen, K. J. (2014). Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annual Review of Microbiology, 68, 61–80. https://doi.org/10.1146/annurev-micro-091213-113025
Tamang, J. P., Watanabe, K., & Holzapfel, W. H. (2016). Review: Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology, 7, 377. https://doi.org/10.3389/fmicb.2016.00377
Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593. https://doi.org/10.1111/jam.13472
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., ... & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359