Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

Revolutionizing Emergency Medicine: The Integration of Artificial Intelligence and Predictive Analytics in Clinical Decision-Making and Training - A Comprehensive Review

Saud Tawfiq Al Shammari 1, Saad Mosluh Mohammed Alqahtani 1, Awwadh Saad Rashed Alshalawi 1, ‏Khalid Shaman M Almutairi 1, ‏Abdullah Thwab M Alotaibi 1, Majed Abdulrahman Bin Owaydhah Alsulami 1, Mohammed Rashed Mohammed Aldossari 1, ‏Khalid Hussain Saeed Alahmari 1, Khalid Abdulmohsen Saad Alanazi 1, Abdulrahman Bader O Alsulami 1*

+ Author Affiliations

Journal of Angiotherapy 8 (9) 1-8 https://doi.org/10.25163/angiotherapy.8910249

Submitted: 24 July 2024 Revised: 13 September 2024  Published: 15 September 2024 


Abstract

Emergency medicine is undergoing a transformative shift with the integration of Artificial Intelligence (AI) and predictive analytics into clinical practice. This review explores the applications, benefits, and challenges of AI in emergency care settings. AI technologies, including machine learning and natural language processing, are increasingly utilized to enhance triage systems, anticipate patient deterioration, and support clinical decision-making. Predictive models facilitate early detection and intervention for critical conditions such as sepsis and cardiac arrest, leading to improved outcomes and resource optimization. Additionally, AI-powered simulations and virtual reality platforms are advancing the training and preparedness of emergency care professionals. Despite these advancements, the implementation of AI is impeded by ethical concerns, trust and transparency issues, data privacy challenges, and disparities in technological accessibility. Furthermore, the lack of interpretability in AI-generated recommendations poses risks to clinical credibility and patient safety. Successful integration of AI into emergency medicine demands coordinated efforts among developers, healthcare providers, and policymakers. When thoughtfully applied, AI and predictive analytics hold the potential to significantly enhance the quality, efficiency, and effectiveness of emergency care. However, achieving widespread adoption requires overcoming technical, ethical, and educational barriers to foster trust and usability within the medical community.

Keywords: Artificial Intelligence, Predictive Analytics, Emergency Medicine, Clinical Decision Support, Healthcare Technology.

References


Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., ... & Al-Muhanna, F. A. (2023). A review of the role of artificial intelligence in healthcare. Journal of personalized medicine, 13(6), 951.

Al-Elq, A. H. (2010). Simulation-based medical teaching and learning. Journal of family and Community Medicine, 17(1), 35-40.

Barua, A., Ahmed, M. U., & Begum, S. (2023). A systematic literature review on multimodal machine learning: Applications, challenges, gaps and future directions. Ieee access, 11, 14804-14831.

Berlyand, Y., Raja, A. S., Dorner, S. C., Prabhakar, A. M., Sonis, J. D., Gottumukkala, R. V., ... & Yun, B. J. (2018). How artificial intelligence could transform emergency department operations. The American journal of emergency medicine, 36(8), 1515-1517.

Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in healthcare (pp. 25-60). Academic Press.

Burgess, A., van Diggele, C., Roberts, C., & Mellis, C. (2020). Feedback in the clinical setting. BMC medical education, 20, 1-5.

Chen, Z. (2023). Artificial intelligence-virtual trainer: Innovative didactics aimed at personalized training needs. Journal of the Knowledge Economy, 14(2), 2007-2025.

Drupad, H. S., & Nagabushan, H. (2015). Level of knowledge about anaphylaxis and its management among health care providers. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 19(7), 412.

Eastwood, K. W., May, R., Andreou, P., Abidi, S., Abidi, S. S. R., & Loubani, O. M. (2023). Needs and expectations for artificial intelligence in emergency medicine according to Canadian physicians. BMC Health Services Research, 23(1), 798.

Ferrara, E. (2023). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3.

Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial intelligence in healthcare (pp. 295-336). Academic Press.

Greenberger, S. M., Finnell, J. T., Chang, B. P., Garg, N., Quinn, S. M., Bird, S., ... & Schmitz, G. (2020). Changes to the ACGME common program requirements and their potential impact on emergency medicine core faculty protected time. AEM education and training, 4(3), 244-253.

Hayward, A. S., Jacquet, G. A., Sanson, T., Mowafi, H., & Hansoti, B. (2015). Academic affairs and global health: how global health electives can accelerate progress towards ACGME milestones. International Journal of Emergency Medicine, 8, 1-5.

Hinson, J. S., & Levin, S. (2023). Data-driven approach yields new approach for emergency department triage. ACEP Now, December, 6.

Issenberg, S. B., Mcgaghie, W. C., Petrusa, E. R., Gordon, D. L., & Scalese, R. J. (2005). Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Medical teacher, 27(1).

Kase, J., & Doolittle, B. (2023). Job and life satisfaction among emergency physicians: A qualitative study. Plos one, 18(2), e0279425.

Kirubarajan, A., Taher, A., Khan, S., & Masood, S. (2020). Artificial intelligence in emergency medicine: a scoping review. JACEP Open, 1(6), 1691-1702.

Komasawa, N., & Yokohira, M. (2023). Simulation-based education in the artificial intelligence era. Cureus, 15(6).

McGrath, J. L., Taekman, J. M., Dev, P., Danforth, D. R., Mohan, D., Kman, N., ... & Won, K. (2018). Using virtual reality simulation environments to assess competence for emergency medicine learners. Academic Emergency Medicine, 25(2), 186-195.

Miller, N., MacNew, H., Nester, J., Wiggins, J. B., Shealy, C., & Senkowski, C. (2013). Jump starting a quality and performance improvement initiative to meet the updated ACGME guidelines. Journal of surgical education, 70(6), 758-768.

Mir, M. M., Mir, G. M., Raina, N. T., Mir, S. M., Mir, S. M., Miskeen, E., ... & Alamri, M. M. S. (2023). Application of artificial intelligence in medical education: current scenario and future perspectives. Journal of advances in medical education & professionalism, 11(3), 133.

Mühling, T., Späth, I., Backhaus, J., Milke, N., Oberdörfer, S., Meining, A., ... & König, S. (2023). Virtual reality in medical emergencies training: benefits, perceived stress, and learning success. Multimedia Systems, 29(4), 2239-2252.

Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC medical ethics, 22, 1-5.

Narayanan, S., Ramakrishnan, R., Durairaj, E., & Das, A. (2023). Artificial intelligence revolutionizing the field of medical education. Cureus, 15(11).

Okuda, Y., & Quinones, J. (2008). The use of simulation in the education of emergency care providers for cardiac emergencies. International journal of emergency medicine, 1, 73-77.

Pudasaini, S., Schenk, L., Möckel, M., & Schneider, A. (2022). Work-life balance in physicians working in two emergency departments of a university hospital: results of a qualitative focus group study. Plos one, 17(11), e0277523.

Ray, G. K., Mukherjee, S., Routray, S. S., Sahu, A., Mishra, D., Naik, A., & Prakash, S. (2023). Knowledge, attitudes and practices of resident doctors and interns on safe blood transfusion practices: a survey-based study. Hematology, Transfusion and Cell Therapy, 45(3), 342-349.

Sartini, M., Carbone, A., Demartini, A., Giribone, L., Oliva, M., Spagnolo, A. M., ... & Cristina, M. L. (2022, August). Overcrowding in emergency department: causes, consequences, and solutions—a narrative review. In Healthcare (Vol. 10, No. 9, p. 1625). MDPI.

Shrivastava, S., Martinez, J., Coletti, D. J., & Fornari, A. (2022). Interprofessional leadership development: Role of emotional intelligence and communication skills training. MedEdPORTAL, 18, 11247.

Varas, J., Coronel, B. V., VILLAGRáN, I. G. N. A. C. I. O., Escalona, G., Hernandez, R., Schuit, G., ... & Achurra, P. (2023). Innovations in surgical training: exploring the role of artificial intelligence and large language models (LLM). Revista do Colégio Brasileiro de Cirurgiões, 50, e20233605.

Wysocki, O., Davies, J. K., Vigo, M., Armstrong, A. C., Landers, D., Lee, R., & Freitas, A. (2023). Assessing the communication gap between AI models and healthcare professionals: Explainability, utility and trust in AI-driven clinical decision-making. Artificial Intelligence, 316, 103839.

Yang, A. C., Flanagan, B., & Ogata, H. (2022). Adaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learning. Computers and Education: Artificial Intelligence, 3, 100104.

Youngblood, P., Harter, P. M., Srivastava, S., Moffett, S., Heinrichs, W. L., & Dev, P. (2008). Design, development, and evaluation of an online virtual emergency department for training trauma teams. Simulation in Healthcare, 3(3), 146-153.

Zhang, C. (2023). A literature study of medical simulations for non-technical skills training in emergency medicine: Twenty years of progress, an integrated research framework, and future research avenues. International journal of environmental research and public health, 20(5), 4487.

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
9
View
0
Share