EMAN RESEARCH PUBLISHING | <p>Biodegradable Nanoparticles for Sustainable Drug Delivery</p>
Nanotechnology and therapeutics
REVIEWS   (Open Access)

Biodegradable Nanoparticles for Sustainable Drug Delivery

Kashfia Haque 1*, Muhit Rana 2, Md Shamsuddin Sultan Khan 3, Tufael 4

+ Author Affiliations

Biosensors and Nanotheranostics 2 (1) 1-9 https://doi.org/10.25163/biosensors.217334

Submitted: 21 March 2024 Revised: 21 May 2024  Published: 30 May 2024 


Abstract

This comprehensive review examines the role of biodegradable nanoparticles in advancing sustainable drug delivery systems. It begins by addressing the environmental and health concerns associated with traditional drug delivery methods, highlighting the need for eco-friendly alternatives. The review provides an in-depth analysis of the properties of biodegradable nanoparticles, emphasizing their biocompatibility, versatility, and tunable characteristics, which make them ideal candidates for drug delivery applications. Various synthesis methods for biodegradable nanoparticles, including emulsification, nanoprecipitation, solvent evaporation, and self-assembly techniques, are discussed, along with their advantages and applications. Moreover, the review explores different types of biodegradable nanoparticles, such as polymer-based nanoparticles, lipid-based nanoparticles, and other biodegradable nanoparticle systems, elucidating their unique properties and applications in drug delivery. Additionally, it delves into the mechanisms of drug loading into biodegradable nanoparticles and drug release from these nanoparticles, outlining encapsulation, surface adsorption, and conjugation methods, as well as diffusion, degradation, and swelling-controlled release mechanisms. Overall, this review provides valuable insights into the design and development of biodegradable nanoparticles for sustainable drug delivery, highlighting their potential to revolutionize healthcare technologies while minimizing environmental impact.

Keywords: Nanoparticles, Sustainable Drug Delivery Systems, Biodegradable Nanoparticles, Synthesis Methods, Future Directions

References


Abdel-Kader, D. H., Badr-Eldin, S. M., & Elkheshen, S. A. (2020). Green Nanotechnology: Anticancer Activity and Toxicity of Metal and Polymeric Nanoparticles—A Review. Drug Design, Development and Therapy, 14, 1609–1626.

Agrahari, V., & Hiremath, P. (2017). Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine, 12(8), 819–823. https://doi.org/10.2217/nnm-2017-0039

Alaswad SO, Mahmoud AS, Arunachalam P. Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers (Basel). 2022 Nov 15;14(22):4924. doi: 10.3390/polym14224924. PMID: 36433050; PMCID: PMC9693219.

Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505-515.

Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. Science, 303(5665), 1818–1822. https://doi.org/10.1126/science.1095833

Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037

Almeida, H., Amaral, M. H., Lobão, P., & Frigerio, C. (2016). Development, Manufacturing, and Assessment of Drug Delivery Systems. In M. L. Garcia, J. L. Parra, & A. A. N. Caraballo (Eds.), New Strategies to Advance Pre/Diabetes Care: Integrative Approach by PPPM (pp. 91–122). Springer International Publishing.

Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol. 2022;10:788128. doi: 10.3389/fbioe.2022.788128.

Autian, J., & Guess, W. L. (1973). The New Field of Plastics Toxicology - Methods and Results. CRC Critical Reviews in Toxicology, 2(1), 1–40. https://doi.org/10.1080/10408447309163830

Ball, R. L., Hajj, K. A., Vizelman, J., Bajaj, P., & Whitehead, K. A. (2018). Lipid nanoparticle formulations for enhanced co-delivery of sIRNA and mRNA. Nano Letters (Print), 18(6), 3814–3822. https://doi.org/10.1021/acs.nanolett.8b01101

Bartlett, J. A., Fischer, A. J., & McCutcheon, J. R. (2015). Introduction to Pharmaceutical Nanomaterials and Nanotechnology. In Pharmaceutical Nanotechnology (pp. 1–38). Springer.

Begines, B., Ortiz-Cerda, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials, 10(7), 1403. https://doi.org/10.3390/nano10071403.

Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science & Engineering. C, Biomimetic Materials, Sensors and Systems (Print), 110, 110698. https://doi.org/10.1016/j.msec.2020.110698

Bhatia, M., Ahuja, N., & Mehta, H. (2018). Contamination in pharmaceutical products: An overview. Asian Journal of Pharmaceutical Sciences, 13(3), 186–193.

Bhumkar, D. R., Joshi, H. M., Sastry, M., & Pokharkar, V. (2007). Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research, 24(8), 1415–1426. https://doi.org/10.1007/s11095-007-9257-9

Blanco-Cabra, N., Movellan, J., Marradi, M., Gracia, R., Salvador, C., Dupin, D., Loinaz, I., & Torrents, E. (2022). Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. Npj Biofilms and Microbiomes, 8(1). https://doi.org/10.1038/s41522-022-00317-9

Bux, S. K., Fleurial, J., & Kaner, R. B. (2010). Nanostructured materials for thermoelectric applications. Chemical Communications (London. 1996. Print), 46(44), 8311. https://doi.org/10.1039/c0cc02627a

Campuzano, S., Yáñez-Sedeño, P., & Pingarrón, J. M. (2018). Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Analytical and Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 411(9), 1791–1806. https://doi.org/10.1007/s00216-018-1273-6

Chalbatani, G. M., Dana, H., Gharagouzloo, E., Grijalvo, S., Eritja, R., Logsdon, C. D., Memari, F., Miri, S. R., Rad, M. R., & Marmari, V. (2019). <p>Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach</p> International Journal of Nanomedicine, Volume 14, 3111–3128. https://doi.org/10.2147/ijn.s200253

Chuan, Y. P., Zeng, B., O’Sullivan, B., Thomas, R., & Middelberg, A. P. J. (2012). Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion. Journal of Colloid and Interface Science, 368(1), 616–624. https://doi.org/10.1016/j.jcis.2011.11.014

Cleland, J. L., Jones, A. J. S., & Krishna, R. (2014). Developing Strategic Processes for Successful Manufacture of Therapeutic Nanoparticles. Pharmaceutical Research, 31(6), 1380–1390.

Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 161(2), 505-522.

Dash, A. K., & Cudworth, G. C. (1998). Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods, 40(1), 1–12. https://doi.org/10.1016/s1056-8719(98)00027-6

Ding, C., Tong, L., Feng, J., & Fu, J. (2016). Recent advances in Stimuli-Responsive Release function drug delivery systems for tumor treatment. Molecules/Molecules Online/Molecules Annual, 21(12), 1715. https://doi.org/10.3390/molecules21121715

Dowling, P., Holland, A., & Ohlendieck, K. (2014). Mass Spectrometry-Based identification of Muscle-Associated and Muscle-Derived proteomic biomarkers of dystrophinopathies. Journal of Neuromuscular Diseases (Print), 1(1), 15–40. https://doi.org/10.3233/jnd-140011

Elmowafy, E., Tiboni, M., & Soliman, M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49(4), 347–380. https://doi.org/10.1007/s40005-019-00439-x

Elmowafy, E., Tiboni, M., & Soliman, M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49(4), 347–380. https://doi.org/10.1007/s40005-019-00439-x

Eras, A., Castillo, D., Suárez, M., Vispo, N. S., Alberício, F., & Rodri´Guez, H. (2022). Chemical conjugation in drug delivery systems. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.889083

Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P., & Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6315–6320. https://doi.org/10.1073/pnas.0601755103

Fasiku, V. O., Amuhaya, E., Kingo, R. M., & Omolo, C. A. (2021). Nano/Microparticles encapsulation via covalent drug conjugation. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.93364

Feng, S., & Huang, G. (2016). Applications of emulsion-based drug delivery systems in cancer therapy. Cancer Letters, 360(2), 175-185.

Feng, X., Xu, W., Li, Z., Song, W., Ding, J., & Chen, X. (2016). Immunomodulatory Nanosystems. Advanced Science, 3(2), 1500429.

Flieger, M., Kantorová, M., Prell, A., Rezanka, T., & Votruba, J. (2003). Biodegradable plastics from renewable sources. Folia Microbiologica, 48(1), 27–44. https://doi.org/10.1007/bf02931273

Freiberg, S., & Zhu, X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 282(1–2), 1–18. https://doi.org/10.1016/j.ijpharm.2004.04.013

Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.601626

Gandini, A. (2008). Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 41(24), 9491–9504. https://doi.org/10.1021/ma801735uzz

Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm. 2010, 7(6):1913-20. doi: 10.1021/mp100253e.  

Gautam, A., & Van Veggel, F. C. J. M. (2013). Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. Journal of Materials Chemistry. B, 1(39), 5186. https://doi.org/10.1039/c3tb20738b

Ge, J., Neofytou, E., Cahill, T. J., Beygui, R. E., & Zare, R. N. (2011). Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano, 6(1), 227–233. https://doi.org/10.1021/nn203430m

George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., Rosenauer, A., Damoiseaux, R., Bradley, K. A., Mädler, L., & Nel, A. E. (2009). Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano, 4(1), 15–29. https://doi.org/10.1021/nn901503q

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.

Gong, C., Deng, S., & Wu, Q. (2018). Preparation of nanoparticles composed of PLGA and polyethyleneimine as non-viral vectors for siRNA delivery. International Journal of Molecular Medicine, 42(5), 2945-2954.

Gong, J., Shi, T., Liu, J., Pei, Z., Liu, J., Ren, X., Li, F., & Qiu, F. (2023). Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomedicine & Pharmacotherapy, 161, 114505. https://doi.org/10.1016/j.biopha.2023.114505.

Guo, W., Song, Y., Song, W. et al. Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy. Sci Rep 10, 7832 (2020). https://doi.org/10.1038/s41598-020-64828-1.

Hans, M., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State & Materials Science, 6(4), 319–327. https://doi.org/10.1016/s1359-0286(02)00117-1

Hong, S., Choi, D. W., Kim, H. N., Park, C. G., Lee, W., & Park, H. H. (2020). Protein-Based nanoparticles as drug delivery systems. Pharmaceutics, 12(7), 604. https://doi.org/10.3390/pharmaceutics12070604

Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews. Materials, 6(12), 1078–1094. https://doi.org/10.1038/s41578-021-00358-0

Hua, S., Wu, S. Y., & editors. (2018). Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Elsevier.

Huang, Y., Leu, M. C., Mazumder, J., & Dönmez, A. (2015). Additive Manufacturing: current state, future potential, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 137(1). https://doi.org/10.1115/1.4028725

Jenjob R, Phakkeeree T, Seidi F, Theerasilp M, Crespy D. Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromol Biosci. 2019 Jun;19(6):e1900063. doi: 10.1002/mabi.201900063. Epub 2019 Apr 24. PMID: 31016873.

Jiang, J., Ao, J., He, C., Xiong, J., Zhao, J., Liu, J., You, S., & Jiang, H. (2018). Preparation and characterisation of ginkgolide nanoparticles via the emulsion solvent evaporation method. Micro & Nano Letters, 13(5), 636–640. https://doi.org/10.1049/mnl.2017.0906

Jong, D. S. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 133. https://doi.org/10.2147/ijn.s596

Judefeind, A., & De Villiers, M. M. (2009). Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems. In Springer eBooks (pp. 129–162). https://doi.org/10.1007/978-0-387-77668-2_5

Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

Kaur, G., Grewal, J., Jyoti, K., Jain, U. K., Chandra, R., & Madan, J. (2018). Oral controlled and sustained drug delivery systems. In Elsevier eBooks (pp. 567–626). https://doi.org/10.1016/b978-0-12-813689-8.00015-x

Kucuk, N., Primožic, M., Knez, Ž., & Leitgeb, M. (2023). Sustainable biodegradable Biopolymer-Based nanoparticles for healthcare applications. International Journal of Molecular Sciences, 24(4), 3188. https://doi.org/10.3390/ijms24043188

Kucuk, Nika, Mateja Primožic, Željko Knez, and Maja Leitgeb. 2023. "Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications" International Journal of Molecular Sciences 24, no. 4: 3188. https://doi.org/10.3390/ijms24043188

Kumari, A., Kumar, V., & Yadav, S. K. (2012). Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PloS One, 7(7), e41230. https://doi.org/10.1371/journal.pone.0041230

Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001

Kurokawa, K., Ohara, T., Morikawa, T., Hanayama, S., & Yamamoto, S. (2020). Environmental problems and challenges of the twenty-first century: Pathways to a sustainable future. Springer Nature.

Kyriakides, T. R., Raj, A., Tseng, T. H., Xiao, H., Nguyen, R., Mohammed, F., Halder, S. S., Xu, M., Wu, M. J., Bao, S., & Sheu, W. C. (2021). Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials, 16(4), 042005. https://doi.org/10.1088/1748-605x/abe5fa

Lam, S. S., Xia, C., & Sonne, C. (2022). Plastic crisis underscores need for alternative sustainable-renewable materials. Journal of Bioresources and Bioproducts, 7(3), 145–147. https://doi.org/10.1016/j.jobab.2022.06.001

Lamprecht, A., Ubrich, N., Yamamoto, H., Schäfer, U., Takeuchi, H., Maincent, P., Kawashima, Y., & Lehr, C. (2001). Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. PubMed, 299(2), 775–781. https://pubmed.ncbi.nlm.nih.gov/11602694

Lembo, D., Donalisio, M., Civra, A., Argenziano, M., & Cavalli, R. (2017). Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery (Print), 15(1), 93–114. https://doi.org/10.1080/17425247.2017.1360863

Leroux, J., Allémann, É., De Jaeghere, F., Doelker, É., & Gurny, R. (1996). Biodegradable nanoparticles — From sustained release formulations to improved site specific drug delivery. Journal of Controlled Release, 39(2–3), 339–350. https://doi.org/10.1016/0168-3659(95)00164-6

Levin J. An Antipoverty Agenda for Public Health: Background and Recommendations. Public Health Rep. 2017;132(4):431-435. doi: 10.1177/0033354917708990. Epub 2017

Li, M., Liu, Y., & Weigmann, B. (2023). Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. International Journal of Molecular Sciences, 24(5), 4454. https://doi.org/10.3390/ijms24054454

Li, R., He, Y., & Zhang, S. (2018). Self-assembly of biomaterials. Nanomedicine, 13(13), 1621-1624.

Li, W., & Szoka, F. C. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24(3), 438–449. https://doi.org/10.1007/s11095-006-9180-5

Lin, X., Wang, Q., Du, S., Guan, Y., Qiu, J., Chen, X., Yuan, D., & Chen, T. (2023). Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. Journal of Drug Delivery Science and Technology, 79, 104050. https://doi.org/10.1016/j.jddst.2022.104050.

Liu, Y., Yang, G., Jin, S., Xu, L., & Zhao, C. (2020). Development of High-Drug-Loading nanoparticles. ChemPlusChem, 85(9), 2143–2157. https://doi.org/10.1002/cplu.202000496

Luo, Y., Wang, Q., & Wang, J. (2019). Biodegradable nano-polymeric systems for therapeutic and diagnostic applications. Nanotechnology Reviews, 8(1), 489-511.

Madkhali, O. A. (2023). Drug delivery of gelatin nanoparticles as a biodegradable polymer for the treatment of infectious diseases: perspectives and challenges. Polymers, 15(21), 4327. https://doi.org/10.3390/polym15214327.

Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55. doi: 10.1186/1477-3155-9-55.

Mahapatro, A., & Singh, D. K. (2011). Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology, 9(1), 55. https://doi.org/10.1186/1477-3155-9-55.

Maier, M. A., Jayaraman, M., Matsuda, S., Liu, J., Barros, S., Querbes, W., Tam, Y. K., Ansell, S. M., Kumar, V., Qin, J., Zhang, X., Wang, Q., Panesar, S., Hutabarat, R., Carioto, M., Hettinger, J., Pachamuthu, K., Butler, D., Rajeev, K. G., . . . Akinc, A. (2013). Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAI therapeutics. Molecular Therapy, 21(8), 1570–1578. https://doi.org/10.1038/mt.2013.124

Mandal, S. D., Mandal, S., Pathak, Y. V., & Patel, J. K. (2021). Current Challenges and Future Directions in Nanomedicine. In Emerging Technologies for Nanoparticle Manufacturing (pp. 575–583).

Marradi, M., Garci´A, I., & Penadés, S. (2011). Carbohydrate-Based nanoparticles for potential applications in medicine. In Progress in molecular biology and translational science (pp. 141–173). https://doi.org/10.1016/b978-0-12-416020-0.00004-8

McDonald, R., Sheihet, L., & Vahini Reddy, P. (2016). Formulation and delivery of aerosols. In The Textbook of Pharmaceutical Medicine (7th ed., pp. 1–26). John Wiley & Sons.

Mir, M., Ahmed, N., & Rehman, A. U. (2017). Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces. B, Biointerfaces, 159, 217–231. https://doi.org/10.1016/j.colsurfb.2017.07.038

Mondal, A., Nayak, A. K., Chakraborty, P., Banerjee, S., & Nandy, B. C. (2023). Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A recent update. Pharmaceutics, 15(8), 2064. https://doi.org/10.3390/pharmaceutics15082064

Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater. 2022;13(3):125. doi: 10.3390/jfb13030125.

Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., & Kuijpers, L. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705), 413–417.

Mora-Huertas, C. E., Fessi, H., & Elai¨Ssari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1–2), 113–142. https://doi.org/10.1016/j.ijpharm.2009.10.018

Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy. Advanced Drug Delivery Reviews, 47(1), 3–19. https://doi.org/10.1016/s0169-409x(00)00118-6

Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003.

Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

Nasra, S., Bhatia, D., & Kumar, A. (2022). Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Advances, 4(17), 3479–3494. https://doi.org/10.1039/d2na00229a

Neek, M., Kim, T. I., & Wang, S. (2019). Protein-based nanoparticles in cancer vaccine development. Nanomedicine, 15(1), 164–174. https://doi.org/10.1016/j.nano.2018.09.004

Ni, H., Hatit, M. Z. C., Zhao, K., Loughrey, D., Lokugamage, M. P., Peck, H. E., Del Cid, A., Muralidharan, A., Kim, Y. T., Santangelo, P. J., & Dahlman, J. E. (2022). Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32281-5

Nishiyabu, R., Hashimoto, N., Cho, T., Watanabe, K., Yasunaga, T., Endo, A., Kaneko, K., Niidome, T., Murata, M., Adachi, C., Katayama, Y., Hashizume, M., & Kimizuka, N. (2009). Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society (Print), 131(6), 2151–2158. https://doi.org/10.1021/ja8058843

Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347. https://doi.org/10.1016/s0169-409x(02)00228-4

Panyam, J., Zhou, W., Prabha, S., Sahoo, S. K., & Labhasetwar, V. (2002). Rapid endo-lysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: implications for drug and gene delivery. the FASEB Journal, 16(10), 1217–1226. https://doi.org/10.1096/fj.02-0088com

Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387

Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., & Chen, Y. (2017). Behavior and potential impacts of Metal-Based Engineered nanoparticles in aquatic environments. Nanomaterials, 7(1), 21. https://doi.org/10.3390/nano7010021

Pérez-Herrero, E., & Fernández-Medarde, A. (2015). Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 93, 52–79. https://doi.org/10.1016/j.ejpb.2015.03.018

Pitt, C. G., Jeffcoat, A., Zweidinger, R. B., & Schindler, A. (1979). Sustained drug delivery systems. I. The permeability of poly(?-caprolactone), poly(DL-lactic acid), and their copolymers. Journal of Biomedical Materials Research, 13(3), 497–507. https://doi.org/10.1002/jbm.820130313

Pulingam, Thiruchelvi, Parisa Foroozandeh, Jo-Ann Chuah, and Kumar Sudesh. 2022. "Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles" Nanomaterials 12, no. 3: 576. https://doi.org/10.3390/nano12030576.

Ranjha, M. M. a. N., Shafique, B., Rehman, A., Mehmood, A., Ali, A., Zahra, S. M., Roobab, U., Singh, A., Ibrahim, S. A., & Siddiqui, S. A. (Ranjha. Biocompatible nanomaterials in food science, technology, and nutrient drug delivery: recent developments and applications. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.778155

Rao, K. (2014a). Systematic Study of Important Variables in Absorption Drug Loading into Specially Formulated Ion-Pairing PLGA Nanoparticles Using Doxorubicin Hydrochloride as Model Drug. IOSR Journal of Pharmacy and Biological Sciences, 9(3), 92–111. https://doi.org/10.9790/3008-093492111

Rao, K. (2014b), Liu, Y., Yang, G., Baby, T., Tengjisi, Chen, D., Weitz, D. A., & Zhao, C. (2020). Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie, 59(12), 4720–4728. https://doi.org/10.1002/anie.201913539

Rathore, A. S., Winkle, H., & Quality by Design Working Group. (2018). Quality by design for biopharmaceuticals: A historical review and guide for implementation. Critical Reviews in Biotechnology, 38(6), 894–908.

Ribeiro, C. a. J., De Castro, C. E., Albuquerque, L. J. C., Batista, C. C. S., & Giacomelli, F. C. (2017). Biodegradable nanoparticles as nanomedicines: are drug-loading content and release mechanism dictated by particle density? Colloid and Polymer Science/Colloid & Polymer Science, 295(8), 1271–1280. https://doi.org/10.1007/s00396-016-4007-3.

Sanopoulou, M., & Papadokostaki, K. G. (2017). Controlled Drug release Systems: mechanisms and kinetics. In WORLD SCIENTIFIC eBooks (pp. 1–33). https://doi.org/10.1142/9789813223974_0001

Shargh, V. H., Hondermarck, H., & Liang, M. (2016). Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine, 11(1), 63–79. https://doi.org/10.2217/nnm.15.186

Sharma, G., Sharma, A. R., Lee, S., Bhattacharya, M., Nam, J., & Chakraborty, C. (2019). Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. International Journal of Pharmaceutics, 559, 360–372. https://doi.org/10.1016/j.ijpharm.2019.01.056

Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437–1451. https://doi.org/10.1039/c1cs15219j

Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 16(3), 950–963. https://doi.org/10.1039/c3gc41935e

Siegel, R. A., & Rathbone, M. J. (2011). Overview of controlled release mechanisms. In Springer eBooks (pp. 19–43). https://doi.org/10.1007/978-1-4614-0881-9_2

Sinhmar, G. K., Shah, N. N., Rawal, S., Chokshi, N. V., Khatri, H. N., Patel, B. M., & Patel, M. M. (2018). Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 565–578. https://doi.org/10.1080/21691401.2018.1463232

Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1–2), 1–20. https://doi.org/10.1016/s0168-3659(00)00339-4

Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013 Jul-Sep;3(3):e24281. doi: 10.4161/biom.24281. Epub 2013 Mar 19. PMID: 23512013; PMCID: PMC3749275.

Su, S., & Kang, P. M. (2020). Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials, 10(4), 656. https://doi.org/10.3390/nano10040656.

Sumana, M., Thirumurugan, A., Muthukumaran, P., & Anand, K. (2020). Biodegradable natural polymeric nanoparticles as carrier for drug delivery. In Engineering materials (pp. 231–246). https://doi.org/10.1007/978-3-030-36260-7_8

Sun, T. M., Zhang, Y. S., Pang, B., Hyun, D. C., Yang, M. X., Xia, Y. N., & Wang, J. (2017). Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Edition, 53(46), 12320-12364.

Thomas OS, Weber W. Overcoming Physiological Barriers to Nanoparticle Delivery-Are We There Yet? Front Bioeng Biotechnol. 2019 Dec 17;7:415. doi: 10.3389/fbioe.2019.00415.

Thomas, Nebu George, et al. “Toxicity Evaluation and Biocompatibility of Nanostructured Biomaterials.” Cytotoxicity - Understanding Cellular Damage and Response, edited by Anil Sukumaran and Mahmoud Ahmed Mansour, IntechOpen, 2023, pp. 1-17. DOI: 10.5772/intechopen.109078

Thomsen, L. B., Thomsen, M. S., & Moos, T. (2015). Targeted drug delivery to the brain using magnetic nanoparticles. Therapeutic Delivery, 6(10), 1145–1155. https://doi.org/10.4155/tde.15.56

Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: An updated review. Int J Pharm Investig. 2012 2-11. doi: 10.4103/2230-973X.96920.

Tong, R., Hemmati, H. D., Langer, R., & Kohane, D. S. (2012). Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. Journal of the American Chemical Society, 134(21), 8848–8855. https://doi.org/10.1021/ja211888a

Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discover (Print), 4(2), 145–160. https://doi.org/10.1038/nrd1632

Tran, T. H., Ramasamy, T., Truong, D. H., Shin, B. S., Choi, H. G., & Yong, C. S. (2019). Development of a novel nanostructured lipid carrier for the encapsulation and controlled release of an opioid receptor antagonist in the treatment of alcohol dependence. International Journal of Pharmaceutics, 562, 1-12.

Tripathi, S., Siddiqui, M. H., Kumar, A., & Vimal, A. (2022). Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. International Nano Letters., 13(3–4), 209–221. https://doi.org/10.1007/s40089-022-00391-z

Tucker, S. P., Amico, S. C., & Dosanjh, N. S. (2019). Inhalation Drug Delivery. In Encyclopedia of Pharmaceutical Science and Technology (pp. 1–29). CRC Press.

Van Den Berg, A. I., Yun, C. O., Schiffelers, R. M., & Hennink, W. E. (2021). Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. Journal of Controlled Release, 331, 121–141. https://doi.org/10.1016/j.jconrel.2021.01.014.

Varalakshmi, B., Karpagam, T., Anand, A., & Balamuralikrishnan, B. (2022). Nanoscale smart drug delivery systems and techniques of drug loading to nanoarchitectures. In Nanotechnology in the life sciences (pp. 29–82). https://doi.org/10.1007/978-3-030-80371-1_2

Verma, M. L., Dhanya, B., Sukriti, Rani, V., Thakur, M. K., Jeslin, J., & Kushwaha, R. (2020). Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules, 154, 390–412. https://doi.org/10.1016/j.ijbiomac.2020.03.105

Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, Xu W, Deng Y, Li G, Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front Bioeng Biotechnol. 2021 Feb 17;9:630352. doi: 10.3389/fbioe.2021.630352.

Whitesides, G. M., Kriebel, J. K., & Mayers, B. (2006). Self-Assembly and nanostructured materials. In Springer eBooks (pp. 217–239). https://doi.org/10.1007/0-387-25656-3_9

Wischke, C., & Schwendeman, S. P. (2008). Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 364(2), 298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2020). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.

Xie, J., Lee, S., & Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064–1079. https://doi.org/10.1016/j.addr.2010.07.009

Xiong, K., Zhang, Y., Wen, Q., Luo, J., Lü, Y., Wu, Z., Wang, B., Chen, Y., Zhao, L., & Fu, S. (2020). Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. International Journal of Pharmaceutics, 589, 119875. https://doi.org/10.1016/j.ijpharm.2020.119875

Xiong, X. B., & Lavasanifar, A. (2020). Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano, 14(6), 6534-6547.

Xu, X., Ho, W. W., Zhang, X., Bertrand, N., & Farokhzad, O. C. (2015b). Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 21(4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001

Yadav KS, Sawant KK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2010 Sep;11(3):1456-65. doi: 10.1208/s12249-010-9519-4. Epub 2010 Sep 15. PMID: 20842542; PMCID: PMC2974135.

Yin, H., Kanasty, R., El-Toukhy, A., Vegas, A. J., Dorkin, J. R., & Anderson, D. G. (2014). Non-viral vectors for gene-based therapy. Nature Reviews. Genetics, 15(8), 541–555. https://doi.org/10.1038/nrg3763

Yoo, H. S., Oh, J. E., Lee, K. H., & Park, T. G. (1999). Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharmaceutical Research, 16(7), 1114–1118. https://doi.org/10.1023/a:1018908421434

Yu, D. G., Yu, J. H., & Branford-White, C. (2018). Electrospraying method for nanoparticle synthesis and its applications in drug delivery. Chemical Engineering Research and Design, 136, 31-47.

Yu, L. X. (2015). Pharmaceutical quality by design: Product and process development, understanding, and control. Pharmaceutical Research, 32(3), 1–15.

Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis. 2018 Jun 8;24(7):1401-1415. doi: 10.1093/ibd/izy123. PMID: 29788186; PMCID: PMC6085987.

Zhang, L., Radovic-Moreno, A. F., Alexis, F., Gu, F., Basto, P. A., Bagalkot, V., Jon, S., Langer, R., & Farokhzad, O. C. (2007). Co-Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates. ChemMedChem, 2(9), 1268–1271. https://doi.org/10.1002/cmdc.200700121

Zhao, Z., Ukidve, A., Kim, J., & Mitragotri, S. (2020). Targeting strategies for Tissue-Specific drug delivery. Cell, 181(1), 151–167. https://doi.org/10.1016/j.cell.2020.02.001

Zhong, Y., Meng, F., Deng, C., & Zhong, Z. (2014). Ligand-Directed Active Tumor-Targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 15(6), 1955–1969. https://doi.org/10.1021/bm5003009

Zimmer, A. K., Zerbe, H., & Kreuter, J. (1994). Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye I. In vitro and in vivo characterisation. Journal of Controlled Release, 32(1), 57–70. https://doi.org/10.1016/0168-3659(94)90225-9

Committee on Publication Ethics

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
100
View

Share