References
Abdel-Kader, D. H., Badr-Eldin, S. M., & Elkheshen, S. A. (2020). Green Nanotechnology: Anticancer Activity and Toxicity of Metal and Polymeric Nanoparticles—A Review. Drug Design, Development and Therapy, 14, 1609–1626.
Agrahari, V., & Hiremath, P. (2017). Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine, 12(8), 819–823. https://doi.org/10.2217/nnm-2017-0039
Alaswad SO, Mahmoud AS, Arunachalam P. Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers (Basel). 2022 Nov 15;14(22):4924. doi: 10.3390/polym14224924. PMID: 36433050; PMCID: PMC9693219.
Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505-515.
Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. Science, 303(5665), 1818–1822. https://doi.org/10.1126/science.1095833
Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
Almeida, H., Amaral, M. H., Lobão, P., & Frigerio, C. (2016). Development, Manufacturing, and Assessment of Drug Delivery Systems. In M. L. Garcia, J. L. Parra, & A. A. N. Caraballo (Eds.), New Strategies to Advance Pre/Diabetes Care: Integrative Approach by PPPM (pp. 91–122). Springer International Publishing.
Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol. 2022;10:788128. doi: 10.3389/fbioe.2022.788128.
Autian, J., & Guess, W. L. (1973). The New Field of Plastics Toxicology - Methods and Results. CRC Critical Reviews in Toxicology, 2(1), 1–40. https://doi.org/10.1080/10408447309163830
Ball, R. L., Hajj, K. A., Vizelman, J., Bajaj, P., & Whitehead, K. A. (2018). Lipid nanoparticle formulations for enhanced co-delivery of sIRNA and mRNA. Nano Letters (Print), 18(6), 3814–3822. https://doi.org/10.1021/acs.nanolett.8b01101
Bartlett, J. A., Fischer, A. J., & McCutcheon, J. R. (2015). Introduction to Pharmaceutical Nanomaterials and Nanotechnology. In Pharmaceutical Nanotechnology (pp. 1–38). Springer.
Begines, B., Ortiz-Cerda, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials, 10(7), 1403. https://doi.org/10.3390/nano10071403.
Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science & Engineering. C, Biomimetic Materials, Sensors and Systems (Print), 110, 110698. https://doi.org/10.1016/j.msec.2020.110698
Bhatia, M., Ahuja, N., & Mehta, H. (2018). Contamination in pharmaceutical products: An overview. Asian Journal of Pharmaceutical Sciences, 13(3), 186–193.
Bhumkar, D. R., Joshi, H. M., Sastry, M., & Pokharkar, V. (2007). Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research, 24(8), 1415–1426. https://doi.org/10.1007/s11095-007-9257-9
Blanco-Cabra, N., Movellan, J., Marradi, M., Gracia, R., Salvador, C., Dupin, D., Loinaz, I., & Torrents, E. (2022). Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. Npj Biofilms and Microbiomes, 8(1). https://doi.org/10.1038/s41522-022-00317-9
Bux, S. K., Fleurial, J., & Kaner, R. B. (2010). Nanostructured materials for thermoelectric applications. Chemical Communications (London. 1996. Print), 46(44), 8311. https://doi.org/10.1039/c0cc02627a
Campuzano, S., Yáñez-Sedeño, P., & Pingarrón, J. M. (2018). Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Analytical and Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 411(9), 1791–1806. https://doi.org/10.1007/s00216-018-1273-6
Chalbatani, G. M., Dana, H., Gharagouzloo, E., Grijalvo, S., Eritja, R., Logsdon, C. D., Memari, F., Miri, S. R., Rad, M. R., & Marmari, V. (2019). <p>Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach</p> International Journal of Nanomedicine, Volume 14, 3111–3128. https://doi.org/10.2147/ijn.s200253
Chuan, Y. P., Zeng, B., O’Sullivan, B., Thomas, R., & Middelberg, A. P. J. (2012). Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion. Journal of Colloid and Interface Science, 368(1), 616–624. https://doi.org/10.1016/j.jcis.2011.11.014
Cleland, J. L., Jones, A. J. S., & Krishna, R. (2014). Developing Strategic Processes for Successful Manufacture of Therapeutic Nanoparticles. Pharmaceutical Research, 31(6), 1380–1390.
Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 161(2), 505-522.
Dash, A. K., & Cudworth, G. C. (1998). Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods, 40(1), 1–12. https://doi.org/10.1016/s1056-8719(98)00027-6
Ding, C., Tong, L., Feng, J., & Fu, J. (2016). Recent advances in Stimuli-Responsive Release function drug delivery systems for tumor treatment. Molecules/Molecules Online/Molecules Annual, 21(12), 1715. https://doi.org/10.3390/molecules21121715
Dowling, P., Holland, A., & Ohlendieck, K. (2014). Mass Spectrometry-Based identification of Muscle-Associated and Muscle-Derived proteomic biomarkers of dystrophinopathies. Journal of Neuromuscular Diseases (Print), 1(1), 15–40. https://doi.org/10.3233/jnd-140011
Elmowafy, E., Tiboni, M., & Soliman, M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49(4), 347–380. https://doi.org/10.1007/s40005-019-00439-x
Elmowafy, E., Tiboni, M., & Soliman, M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49(4), 347–380. https://doi.org/10.1007/s40005-019-00439-x
Eras, A., Castillo, D., Suárez, M., Vispo, N. S., Alberício, F., & Rodri´Guez, H. (2022). Chemical conjugation in drug delivery systems. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.889083
Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P., & Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6315–6320. https://doi.org/10.1073/pnas.0601755103
Fasiku, V. O., Amuhaya, E., Kingo, R. M., & Omolo, C. A. (2021). Nano/Microparticles encapsulation via covalent drug conjugation. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.93364
Feng, S., & Huang, G. (2016). Applications of emulsion-based drug delivery systems in cancer therapy. Cancer Letters, 360(2), 175-185.
Feng, X., Xu, W., Li, Z., Song, W., Ding, J., & Chen, X. (2016). Immunomodulatory Nanosystems. Advanced Science, 3(2), 1500429.
Flieger, M., Kantorová, M., Prell, A., Rezanka, T., & Votruba, J. (2003). Biodegradable plastics from renewable sources. Folia Microbiologica, 48(1), 27–44. https://doi.org/10.1007/bf02931273
Freiberg, S., & Zhu, X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 282(1–2), 1–18. https://doi.org/10.1016/j.ijpharm.2004.04.013
Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.601626
Gandini, A. (2008). Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 41(24), 9491–9504. https://doi.org/10.1021/ma801735uzz
Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm. 2010, 7(6):1913-20. doi: 10.1021/mp100253e.
Gautam, A., & Van Veggel, F. C. J. M. (2013). Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. Journal of Materials Chemistry. B, 1(39), 5186. https://doi.org/10.1039/c3tb20738b
Ge, J., Neofytou, E., Cahill, T. J., Beygui, R. E., & Zare, R. N. (2011). Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano, 6(1), 227–233. https://doi.org/10.1021/nn203430m
George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., Rosenauer, A., Damoiseaux, R., Bradley, K. A., Mädler, L., & Nel, A. E. (2009). Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano, 4(1), 15–29. https://doi.org/10.1021/nn901503q
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
Gong, C., Deng, S., & Wu, Q. (2018). Preparation of nanoparticles composed of PLGA and polyethyleneimine as non-viral vectors for siRNA delivery. International Journal of Molecular Medicine, 42(5), 2945-2954.
Gong, J., Shi, T., Liu, J., Pei, Z., Liu, J., Ren, X., Li, F., & Qiu, F. (2023). Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomedicine & Pharmacotherapy, 161, 114505. https://doi.org/10.1016/j.biopha.2023.114505.
Guo, W., Song, Y., Song, W. et al. Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy. Sci Rep 10, 7832 (2020). https://doi.org/10.1038/s41598-020-64828-1.
Hans, M., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State & Materials Science, 6(4), 319–327. https://doi.org/10.1016/s1359-0286(02)00117-1
Hong, S., Choi, D. W., Kim, H. N., Park, C. G., Lee, W., & Park, H. H. (2020). Protein-Based nanoparticles as drug delivery systems. Pharmaceutics, 12(7), 604. https://doi.org/10.3390/pharmaceutics12070604
Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews. Materials, 6(12), 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
Hua, S., Wu, S. Y., & editors. (2018). Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Elsevier.
Huang, Y., Leu, M. C., Mazumder, J., & Dönmez, A. (2015). Additive Manufacturing: current state, future potential, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 137(1). https://doi.org/10.1115/1.4028725
Jenjob R, Phakkeeree T, Seidi F, Theerasilp M, Crespy D. Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromol Biosci. 2019 Jun;19(6):e1900063. doi: 10.1002/mabi.201900063. Epub 2019 Apr 24. PMID: 31016873.
Jiang, J., Ao, J., He, C., Xiong, J., Zhao, J., Liu, J., You, S., & Jiang, H. (2018). Preparation and characterisation of ginkgolide nanoparticles via the emulsion solvent evaporation method. Micro & Nano Letters, 13(5), 636–640. https://doi.org/10.1049/mnl.2017.0906
Jong, D. S. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 133. https://doi.org/10.2147/ijn.s596
Judefeind, A., & De Villiers, M. M. (2009). Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems. In Springer eBooks (pp. 129–162). https://doi.org/10.1007/978-0-387-77668-2_5
Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346
Kaur, G., Grewal, J., Jyoti, K., Jain, U. K., Chandra, R., & Madan, J. (2018). Oral controlled and sustained drug delivery systems. In Elsevier eBooks (pp. 567–626). https://doi.org/10.1016/b978-0-12-813689-8.00015-x
Kucuk, N., Primožic, M., Knez, Ž., & Leitgeb, M. (2023). Sustainable biodegradable Biopolymer-Based nanoparticles for healthcare applications. International Journal of Molecular Sciences, 24(4), 3188. https://doi.org/10.3390/ijms24043188
Kucuk, Nika, Mateja Primožic, Željko Knez, and Maja Leitgeb. 2023. "Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications" International Journal of Molecular Sciences 24, no. 4: 3188. https://doi.org/10.3390/ijms24043188
Kumari, A., Kumar, V., & Yadav, S. K. (2012). Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PloS One, 7(7), e41230. https://doi.org/10.1371/journal.pone.0041230
Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001
Kurokawa, K., Ohara, T., Morikawa, T., Hanayama, S., & Yamamoto, S. (2020). Environmental problems and challenges of the twenty-first century: Pathways to a sustainable future. Springer Nature.
Kyriakides, T. R., Raj, A., Tseng, T. H., Xiao, H., Nguyen, R., Mohammed, F., Halder, S. S., Xu, M., Wu, M. J., Bao, S., & Sheu, W. C. (2021). Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials, 16(4), 042005. https://doi.org/10.1088/1748-605x/abe5fa
Lam, S. S., Xia, C., & Sonne, C. (2022). Plastic crisis underscores need for alternative sustainable-renewable materials. Journal of Bioresources and Bioproducts, 7(3), 145–147. https://doi.org/10.1016/j.jobab.2022.06.001
Lamprecht, A., Ubrich, N., Yamamoto, H., Schäfer, U., Takeuchi, H., Maincent, P., Kawashima, Y., & Lehr, C. (2001). Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. PubMed, 299(2), 775–781. https://pubmed.ncbi.nlm.nih.gov/11602694
Lembo, D., Donalisio, M., Civra, A., Argenziano, M., & Cavalli, R. (2017). Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery (Print), 15(1), 93–114. https://doi.org/10.1080/17425247.2017.1360863
Leroux, J., Allémann, É., De Jaeghere, F., Doelker, É., & Gurny, R. (1996). Biodegradable nanoparticles — From sustained release formulations to improved site specific drug delivery. Journal of Controlled Release, 39(2–3), 339–350. https://doi.org/10.1016/0168-3659(95)00164-6
Levin J. An Antipoverty Agenda for Public Health: Background and Recommendations. Public Health Rep. 2017;132(4):431-435. doi: 10.1177/0033354917708990. Epub 2017
Li, M., Liu, Y., & Weigmann, B. (2023). Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. International Journal of Molecular Sciences, 24(5), 4454. https://doi.org/10.3390/ijms24054454
Li, R., He, Y., & Zhang, S. (2018). Self-assembly of biomaterials. Nanomedicine, 13(13), 1621-1624.
Li, W., & Szoka, F. C. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24(3), 438–449. https://doi.org/10.1007/s11095-006-9180-5
Lin, X., Wang, Q., Du, S., Guan, Y., Qiu, J., Chen, X., Yuan, D., & Chen, T. (2023). Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. Journal of Drug Delivery Science and Technology, 79, 104050. https://doi.org/10.1016/j.jddst.2022.104050.
Liu, Y., Yang, G., Jin, S., Xu, L., & Zhao, C. (2020). Development of High-Drug-Loading nanoparticles. ChemPlusChem, 85(9), 2143–2157. https://doi.org/10.1002/cplu.202000496
Luo, Y., Wang, Q., & Wang, J. (2019). Biodegradable nano-polymeric systems for therapeutic and diagnostic applications. Nanotechnology Reviews, 8(1), 489-511.
Madkhali, O. A. (2023). Drug delivery of gelatin nanoparticles as a biodegradable polymer for the treatment of infectious diseases: perspectives and challenges. Polymers, 15(21), 4327. https://doi.org/10.3390/polym15214327.
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55. doi: 10.1186/1477-3155-9-55.
Mahapatro, A., & Singh, D. K. (2011). Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology, 9(1), 55. https://doi.org/10.1186/1477-3155-9-55.
Maier, M. A., Jayaraman, M., Matsuda, S., Liu, J., Barros, S., Querbes, W., Tam, Y. K., Ansell, S. M., Kumar, V., Qin, J., Zhang, X., Wang, Q., Panesar, S., Hutabarat, R., Carioto, M., Hettinger, J., Pachamuthu, K., Butler, D., Rajeev, K. G., . . . Akinc, A. (2013). Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAI therapeutics. Molecular Therapy, 21(8), 1570–1578. https://doi.org/10.1038/mt.2013.124
Mandal, S. D., Mandal, S., Pathak, Y. V., & Patel, J. K. (2021). Current Challenges and Future Directions in Nanomedicine. In Emerging Technologies for Nanoparticle Manufacturing (pp. 575–583).
Marradi, M., Garci´A, I., & Penadés, S. (2011). Carbohydrate-Based nanoparticles for potential applications in medicine. In Progress in molecular biology and translational science (pp. 141–173). https://doi.org/10.1016/b978-0-12-416020-0.00004-8
McDonald, R., Sheihet, L., & Vahini Reddy, P. (2016). Formulation and delivery of aerosols. In The Textbook of Pharmaceutical Medicine (7th ed., pp. 1–26). John Wiley & Sons.
Mir, M., Ahmed, N., & Rehman, A. U. (2017). Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces. B, Biointerfaces, 159, 217–231. https://doi.org/10.1016/j.colsurfb.2017.07.038
Mondal, A., Nayak, A. K., Chakraborty, P., Banerjee, S., & Nandy, B. C. (2023). Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A recent update. Pharmaceutics, 15(8), 2064. https://doi.org/10.3390/pharmaceutics15082064
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater. 2022;13(3):125. doi: 10.3390/jfb13030125.
Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., & Kuijpers, L. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705), 413–417.
Mora-Huertas, C. E., Fessi, H., & Elai¨Ssari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1–2), 113–142. https://doi.org/10.1016/j.ijpharm.2009.10.018
Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy. Advanced Drug Delivery Reviews, 47(1), 3–19. https://doi.org/10.1016/s0169-409x(00)00118-6
Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003.
Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092
Nasra, S., Bhatia, D., & Kumar, A. (2022). Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Advances, 4(17), 3479–3494. https://doi.org/10.1039/d2na00229a
Neek, M., Kim, T. I., & Wang, S. (2019). Protein-based nanoparticles in cancer vaccine development. Nanomedicine, 15(1), 164–174. https://doi.org/10.1016/j.nano.2018.09.004
Ni, H., Hatit, M. Z. C., Zhao, K., Loughrey, D., Lokugamage, M. P., Peck, H. E., Del Cid, A., Muralidharan, A., Kim, Y. T., Santangelo, P. J., & Dahlman, J. E. (2022). Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32281-5
Nishiyabu, R., Hashimoto, N., Cho, T., Watanabe, K., Yasunaga, T., Endo, A., Kaneko, K., Niidome, T., Murata, M., Adachi, C., Katayama, Y., Hashizume, M., & Kimizuka, N. (2009). Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society (Print), 131(6), 2151–2158. https://doi.org/10.1021/ja8058843
Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347. https://doi.org/10.1016/s0169-409x(02)00228-4
Panyam, J., Zhou, W., Prabha, S., Sahoo, S. K., & Labhasetwar, V. (2002). Rapid endo-lysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: implications for drug and gene delivery. the FASEB Journal, 16(10), 1217–1226. https://doi.org/10.1096/fj.02-0088com
Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., & Chen, Y. (2017). Behavior and potential impacts of Metal-Based Engineered nanoparticles in aquatic environments. Nanomaterials, 7(1), 21. https://doi.org/10.3390/nano7010021
Pérez-Herrero, E., & Fernández-Medarde, A. (2015). Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 93, 52–79. https://doi.org/10.1016/j.ejpb.2015.03.018
Pitt, C. G., Jeffcoat, A., Zweidinger, R. B., & Schindler, A. (1979). Sustained drug delivery systems. I. The permeability of poly(?-caprolactone), poly(DL-lactic acid), and their copolymers. Journal of Biomedical Materials Research, 13(3), 497–507. https://doi.org/10.1002/jbm.820130313
Pulingam, Thiruchelvi, Parisa Foroozandeh, Jo-Ann Chuah, and Kumar Sudesh. 2022. "Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles" Nanomaterials 12, no. 3: 576. https://doi.org/10.3390/nano12030576.
Ranjha, M. M. a. N., Shafique, B., Rehman, A., Mehmood, A., Ali, A., Zahra, S. M., Roobab, U., Singh, A., Ibrahim, S. A., & Siddiqui, S. A. (Ranjha. Biocompatible nanomaterials in food science, technology, and nutrient drug delivery: recent developments and applications. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.778155
Rao, K. (2014a). Systematic Study of Important Variables in Absorption Drug Loading into Specially Formulated Ion-Pairing PLGA Nanoparticles Using Doxorubicin Hydrochloride as Model Drug. IOSR Journal of Pharmacy and Biological Sciences, 9(3), 92–111. https://doi.org/10.9790/3008-093492111
Rao, K. (2014b), Liu, Y., Yang, G., Baby, T., Tengjisi, Chen, D., Weitz, D. A., & Zhao, C. (2020). Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie, 59(12), 4720–4728. https://doi.org/10.1002/anie.201913539
Rathore, A. S., Winkle, H., & Quality by Design Working Group. (2018). Quality by design for biopharmaceuticals: A historical review and guide for implementation. Critical Reviews in Biotechnology, 38(6), 894–908.
Ribeiro, C. a. J., De Castro, C. E., Albuquerque, L. J. C., Batista, C. C. S., & Giacomelli, F. C. (2017). Biodegradable nanoparticles as nanomedicines: are drug-loading content and release mechanism dictated by particle density? Colloid and Polymer Science/Colloid & Polymer Science, 295(8), 1271–1280. https://doi.org/10.1007/s00396-016-4007-3.
Sanopoulou, M., & Papadokostaki, K. G. (2017). Controlled Drug release Systems: mechanisms and kinetics. In WORLD SCIENTIFIC eBooks (pp. 1–33). https://doi.org/10.1142/9789813223974_0001
Shargh, V. H., Hondermarck, H., & Liang, M. (2016). Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine, 11(1), 63–79. https://doi.org/10.2217/nnm.15.186
Sharma, G., Sharma, A. R., Lee, S., Bhattacharya, M., Nam, J., & Chakraborty, C. (2019). Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. International Journal of Pharmaceutics, 559, 360–372. https://doi.org/10.1016/j.ijpharm.2019.01.056
Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437–1451. https://doi.org/10.1039/c1cs15219j
Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 16(3), 950–963. https://doi.org/10.1039/c3gc41935e
Siegel, R. A., & Rathbone, M. J. (2011). Overview of controlled release mechanisms. In Springer eBooks (pp. 19–43). https://doi.org/10.1007/978-1-4614-0881-9_2
Sinhmar, G. K., Shah, N. N., Rawal, S., Chokshi, N. V., Khatri, H. N., Patel, B. M., & Patel, M. M. (2018). Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 565–578. https://doi.org/10.1080/21691401.2018.1463232
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1–2), 1–20. https://doi.org/10.1016/s0168-3659(00)00339-4
Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013 Jul-Sep;3(3):e24281. doi: 10.4161/biom.24281. Epub 2013 Mar 19. PMID: 23512013; PMCID: PMC3749275.
Su, S., & Kang, P. M. (2020). Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials, 10(4), 656. https://doi.org/10.3390/nano10040656.
Sumana, M., Thirumurugan, A., Muthukumaran, P., & Anand, K. (2020). Biodegradable natural polymeric nanoparticles as carrier for drug delivery. In Engineering materials (pp. 231–246). https://doi.org/10.1007/978-3-030-36260-7_8
Sun, T. M., Zhang, Y. S., Pang, B., Hyun, D. C., Yang, M. X., Xia, Y. N., & Wang, J. (2017). Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Edition, 53(46), 12320-12364.
Thomas OS, Weber W. Overcoming Physiological Barriers to Nanoparticle Delivery-Are We There Yet? Front Bioeng Biotechnol. 2019 Dec 17;7:415. doi: 10.3389/fbioe.2019.00415.
Thomas, Nebu George, et al. “Toxicity Evaluation and Biocompatibility of Nanostructured Biomaterials.” Cytotoxicity - Understanding Cellular Damage and Response, edited by Anil Sukumaran and Mahmoud Ahmed Mansour, IntechOpen, 2023, pp. 1-17. DOI: 10.5772/intechopen.109078.
Thomsen, L. B., Thomsen, M. S., & Moos, T. (2015). Targeted drug delivery to the brain using magnetic nanoparticles. Therapeutic Delivery, 6(10), 1145–1155. https://doi.org/10.4155/tde.15.56
Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: An updated review. Int J Pharm Investig. 2012 2-11. doi: 10.4103/2230-973X.96920.
Tong, R., Hemmati, H. D., Langer, R., & Kohane, D. S. (2012). Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. Journal of the American Chemical Society, 134(21), 8848–8855. https://doi.org/10.1021/ja211888a
Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discover (Print), 4(2), 145–160. https://doi.org/10.1038/nrd1632
Tran, T. H., Ramasamy, T., Truong, D. H., Shin, B. S., Choi, H. G., & Yong, C. S. (2019). Development of a novel nanostructured lipid carrier for the encapsulation and controlled release of an opioid receptor antagonist in the treatment of alcohol dependence. International Journal of Pharmaceutics, 562, 1-12.
Tripathi, S., Siddiqui, M. H., Kumar, A., & Vimal, A. (2022). Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. International Nano Letters., 13(3–4), 209–221. https://doi.org/10.1007/s40089-022-00391-z
Tucker, S. P., Amico, S. C., & Dosanjh, N. S. (2019). Inhalation Drug Delivery. In Encyclopedia of Pharmaceutical Science and Technology (pp. 1–29). CRC Press.
Van Den Berg, A. I., Yun, C. O., Schiffelers, R. M., & Hennink, W. E. (2021). Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. Journal of Controlled Release, 331, 121–141. https://doi.org/10.1016/j.jconrel.2021.01.014.
Varalakshmi, B., Karpagam, T., Anand, A., & Balamuralikrishnan, B. (2022). Nanoscale smart drug delivery systems and techniques of drug loading to nanoarchitectures. In Nanotechnology in the life sciences (pp. 29–82). https://doi.org/10.1007/978-3-030-80371-1_2
Verma, M. L., Dhanya, B., Sukriti, Rani, V., Thakur, M. K., Jeslin, J., & Kushwaha, R. (2020). Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules, 154, 390–412. https://doi.org/10.1016/j.ijbiomac.2020.03.105
Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, Xu W, Deng Y, Li G, Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front Bioeng Biotechnol. 2021 Feb 17;9:630352. doi: 10.3389/fbioe.2021.630352.
Whitesides, G. M., Kriebel, J. K., & Mayers, B. (2006). Self-Assembly and nanostructured materials. In Springer eBooks (pp. 217–239). https://doi.org/10.1007/0-387-25656-3_9
Wischke, C., & Schwendeman, S. P. (2008). Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 364(2), 298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2020). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.
Xie, J., Lee, S., & Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064–1079. https://doi.org/10.1016/j.addr.2010.07.009
Xiong, K., Zhang, Y., Wen, Q., Luo, J., Lü, Y., Wu, Z., Wang, B., Chen, Y., Zhao, L., & Fu, S. (2020). Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. International Journal of Pharmaceutics, 589, 119875. https://doi.org/10.1016/j.ijpharm.2020.119875
Xiong, X. B., & Lavasanifar, A. (2020). Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano, 14(6), 6534-6547.
Xu, X., Ho, W. W., Zhang, X., Bertrand, N., & Farokhzad, O. C. (2015b). Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 21(4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001
Yadav KS, Sawant KK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2010 Sep;11(3):1456-65. doi: 10.1208/s12249-010-9519-4. Epub 2010 Sep 15. PMID: 20842542; PMCID: PMC2974135.
Yin, H., Kanasty, R., El-Toukhy, A., Vegas, A. J., Dorkin, J. R., & Anderson, D. G. (2014). Non-viral vectors for gene-based therapy. Nature Reviews. Genetics, 15(8), 541–555. https://doi.org/10.1038/nrg3763
Yoo, H. S., Oh, J. E., Lee, K. H., & Park, T. G. (1999). Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharmaceutical Research, 16(7), 1114–1118. https://doi.org/10.1023/a:1018908421434
Yu, D. G., Yu, J. H., & Branford-White, C. (2018). Electrospraying method for nanoparticle synthesis and its applications in drug delivery. Chemical Engineering Research and Design, 136, 31-47.
Yu, L. X. (2015). Pharmaceutical quality by design: Product and process development, understanding, and control. Pharmaceutical Research, 32(3), 1–15.
Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis. 2018 Jun 8;24(7):1401-1415. doi: 10.1093/ibd/izy123. PMID: 29788186; PMCID: PMC6085987.
Zhang, L., Radovic-Moreno, A. F., Alexis, F., Gu, F., Basto, P. A., Bagalkot, V., Jon, S., Langer, R., & Farokhzad, O. C. (2007). Co-Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates. ChemMedChem, 2(9), 1268–1271. https://doi.org/10.1002/cmdc.200700121
Zhao, Z., Ukidve, A., Kim, J., & Mitragotri, S. (2020). Targeting strategies for Tissue-Specific drug delivery. Cell, 181(1), 151–167. https://doi.org/10.1016/j.cell.2020.02.001
Zhong, Y., Meng, F., Deng, C., & Zhong, Z. (2014). Ligand-Directed Active Tumor-Targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 15(6), 1955–1969. https://doi.org/10.1021/bm5003009
Zimmer, A. K., Zerbe, H., & Kreuter, J. (1994). Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye I. In vitro and in vivo characterisation. Journal of Controlled Release, 32(1), 57–70. https://doi.org/10.1016/0168-3659(94)90225-9