EMAN RESEARCH PUBLISHING | <p>Challenges of Breast Cancer Treatment through Microbial Therapeutic Delivery</p>
MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
REVIEWS   (Open Access)

Challenges of Breast Cancer Treatment through Microbial Therapeutic Delivery

Md Shamsuddin Sultan Khan1*, Samia Haque2, Md. Fakruddin2

+ Author Affiliations

Microbial Bioactives 6(1) 1-15 https://doi.org/10.25163/microbioactives.619347

Submitted: 09 September 2023  Revised: 18 October 2023  Published: 21 October 2023 

Abstract

Breast cancer remains a significant global health concern, necessitating innovative approaches for its treatment. Using bacteria as vehicles for therapeutic delivery has emerged as a promising strategy. As a group of prokaryotic microorganisms, bacteria have great potential for use in cancer therapy. Thus, strategies for treating breast cancer need to be continuously refined to achieve a better patient outcome. This manuscript explores the potential of bacterial-based therapies for breast cancer treatment, elucidating the mechanisms underlying their application, safety considerations, and recent advancements. Nevertheless, notable challenges in bacterial-based cancer treatments include potential cytotoxicity, incomplete cancer cell lysis, and the risk of genomic mutations. With an emphasis on engineering bacteria to target and deliver therapeutic agents specifically to tumor sites, this manuscript provides insights into the future of personalized, precise, and effective breast cancer treatment.

Keywords: Breast cancer, Bacteria, Microorganisms, Pharmacology, PK/PD, safety, efficacy

References

Barnes B.B., Steindorf K., Hein R., Flesch-Janys D., Chang-Claude J. (2011), Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors. Cancer Epidemiol., 35, 345–352. doi: 10.1016/j.canep.2010.11.003.

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. (2018), Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 68, 394–424. doi: 10.3322/caac.21492.

Caygill C.P., Braddick M., Hill M.J., Knowles R.L., Sharp J.C. (1995), The association between typhoid carriage, typhoid infection and subsequent cancer at a number of sites. Eur. J. Cancer Prev., 4, 187–193. doi: 10.1097/00008469-199504000-00010.

Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews. 2016;116(5):2826-2885

Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15155-60. doi: 10.1073/pnas.251543698. Epub 2001 Nov 27. PMID: 11724950; PMCID: PMC64999.

Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, Hasty J, Bhatia SN. Programmable probiotics for detection of cancer in urine. Sci Transl Med. 2015 May 27;7(289):289ra84. doi: 10.1126/scitranslmed.aaa3519. PMID: 26019220; PMCID: PMC4511399.

Danino T., Prindle A., Hasty J., Bhatia S. (2013), Measuring growth and gene expression dynamics of tumor-targeted S. typhimurium bacteria. J. Vis. Exp., 77, e50540. doi: 10.3791/50540.

De Spiegeleer B., Verbeke F., D’Hondt M., Hendrix A., Van De Wiele C., Burvenich C., Peremans K., De Wever O., Bracke M., Wynendaele E., (2015), The quorum sensing peptides phrg, csp and edf promote angiogenesis and invasion of breast cancer cells in vitro. PLoS ONE., 10:e0119471. doi: 10.1371/journal.pone.0119471.

Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, Julio E, Atolia E, Tsimring LS, Bhatia SN, Hasty J. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016 Aug 4;536(7614):81-85. doi: 10.1038/nature18930. Epub 2016 Jul 20. PMID: 27437587; PMCID: PMC5048415

Duong MT, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019 Dec 11;51(12):1-15. doi: 10.1038/s12276-019-0297-0. PMID: 31827064; PMCID: PMC6906302.

Forbes, N. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10, 785–794 (2010). https://doi.org/10.1038/nrc2934

Gupta P.K., Tripathi D., Kulkarni S., Rajan M.G. Mycobacterium tuberculosis H37Rv infected thp-1 cells induce epithelial mesenchymal transition (EMT) in lung adenocarcinoma epithelial cell line (A549) Cell. Immunol. 2016;300:33–40. doi: 10.1016/j.cellimm.2015.11.007.

Huayu Wu, Dan Zhong, Zhijun Zhang, Yahui Wu, Yunkun Li, Hongli Mao, Kui Luo, Deling Kong, Qiyong Gong, and Zhongwei Gu, (2021), A Bacteria-Inspired Morphology Genetic Biomedical Material: Self-Propelled Artificial Microbots for Metastatic Triple Negative Breast Cancer Treatment, ACS Nano, 15 (3), 4845-4860. DOI: 10.1021/acsnano.0c09594

Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U. Second messenger-mediated tactile response by a bacterial rotary motor. Science. 2017 Oct 27;358(6362):531-534. doi: 10.1126/science.aan5353. PMID: 29074777

Lax A.J. (2005), Opinion: Bacterial toxins and cancer—A case to answer? Nat. Rev. Microbiol., 3, 343–349. doi: 10.1038/nrmicro1130.

Lecuit M., Abachin E., Martin A., Poyart C., Pochart P., Suarez F., Bengoufa D., Feuillard J., Lavergne A., Gordon J.I., et al, (2004), Immunoproliferative small intestinal disease associated with campylobacter jejuni. N. Engl. J. Med., 350, 239–248. doi: 10.1056/NEJMoa031887.

Lehouritis P, Stanton M, McCarthy FO, Jeavons M, Tangney M. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release. 2016 Jan 28;222:9-17. doi: 10.1016/j.jconrel.2015.11.030. Epub 2015 Dec 2. PMID: 26655063.

Nath G., Gulati A.K., Shukla V.K. (2010), Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J. Gastroenterol., 16, 5395. doi: 10.3748/wjg.v16.i43.5395.

Nguyen DP, Mahesh M, Elsässer SJ, Hancock SM, Uttamapinant C, Chin JW. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc. 2014 Feb 12;136(6):2240-3. doi: 10.1021/ja412191m. Epub 2014 Jan 30. PMID: 24479649; PMCID: PMC4333589.

Rosadi F., Fiorentini C., Fabbri A. (2016), Bacterial protein toxins in human cancers. Pathog. Dis., 74:ftv105. doi: 10.1093/femspd/ftv105.

Roy I, Zimmerman NP, Mackinnon AC, Tsai S, Evans DB, Dwinell MB. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One. 2014;9(3):e90400.

Sawant, Shruti S., Suyash M. Patil, Vivek Gupta, and Nitesh K. Kunda. 2020. "Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment" International Journal of Molecular Sciences 21, no. 20: 7575. https://doi.org/10.3390/ijms21207575

Shen H, Aggarwal N, Wun KS, Lee YS, Hwang IY, Chang MW. Engineered microbial systems for advanced drug delivery. Adv Drug Deliv Rev. 2022 Aug;187:114364. doi: 10.1016/j.addr.2022.114364. Epub 2022 May 30. PMID: 35654214.

Song S., Vuai M.S., Zhong M. (2018), The role of bacteria in cancer therapy–enemies in the past, but allies at present. Infect. Agents Cancer., 13, 9. doi: 10.1186/s13027-018-0180-y.

Song WF, Zheng D, Zeng SM, Zeng X, Zhang XZ. Targeting to Tumor-Harbored Bacteria for Precision Tumor Therapy. ACS Nano. 2022 Oct 25;16(10):17402-17413. doi: 10.1021/acsnano.2c08555. Epub 2022 Oct 6. PMID: 36200710.

Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, Yusuf R, Côté D, Vinogradov SA, Scadden DT, Lin CP. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014 Apr 10;508(7495):269-73. doi: 10.1038/nature13034. Epub 2014 Mar 2. PMID: 24590072; PMCID: PMC3984353.

Denny WA. (2004), Tumor-activated prodrugs—a new approach to cancer therapy. Cancer Invest., 22, 604–19.

Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X, et al. (2011), Designed antimicrobial and antitumor peptides with high selectivity. Biomacromol., 12, 3839–43.

Torfoss V, Isaksson J, Ausbacher D, Brandsdal BO, Flaten GE, Anderssen T, et al. (2012), Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilic β2, 2-amino acid. J Pept Sci., 18, 609–19.

Riedl S., Zweytick D., Lohner K. (2011), Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids., 164:766–781. doi: 10.1016/j.chemphyslip.2011.09.004.

Torfoss V., Isaksson J., Ausbacher D., Brandsdal B.O., Flaten G.E., Anderssen T., Cavalcanti-Jacobsen C.d.A., Havelkova M., Nguyen L.T., Vogel H.J., et al. (2012), Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilic β2, 2-amino acid. J. Pept. Sci., 18, 609–619. doi: 10.1002/psc.2441.

Deutscher S.L. (2010), Phage display in molecular imaging and diagnosis of cancer. Chem. Rev., 110, 3196–3211. doi: 10.1021/cr900317f.

Committee on Publication Ethics

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



11
Save
0
Citation
315
View
0
Share