Unseen Collateral: How Glyphosate Reshapes the Microbial Foundations of Life
Suhaila A. Al-Sheboul 1*, Ibrahim Aldeeb 2
Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110419
Submitted: 24 February 2025 Revised: 21 May 2025 Accepted: 25 May 2025 Published: 26 May 2025
Abstract
Glyphosate, once celebrated as a cornerstone of modern agriculture, has come under renewed scrutiny as science begins to uncover its hidden ripple effects on the microbial fabric of life. Initially hailed for its precision—targeting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme unique to plants—glyphosate was long considered harmless to humans and animals. Yet, this assumption overlooked an essential truth: microbes, the silent engineers of soil, water, and the human body, also rely on the very pathways glyphosate disrupts. This systematic review weaves together insights from studies published before 2018, examining how glyphosate alters microbial diversity and ecological balance across interconnected ecosystems. Evidence reveals that the herbicide suppresses beneficial soil organisms such as nitrogen-fixing bacteria and mycorrhizal fungi while fostering pathogenic species like Fusarium, gradually eroding soil vitality. In the human gut, glyphosate selectively impairs key probiotic genera, including Lactobacillus and Bifidobacterium, disturbing metabolic and immune equilibrium. Its journey through waterways further extends this disruption, reducing phytoplankton productivity, upsetting aquatic food chains, and fueling toxic cyanobacterial blooms. Taken together, these findings suggest that glyphosate’s reach extends far beyond weed control—it is a broad-spectrum microbial disruptor reshaping the unseen foundations of planetary health. Reconsidering its use is no longer a matter of agricultural efficiency but of ecological and biological responsibility.
Keywords: Glyphosate, Microbiome, Soil Microbiology, Gut Microbiota, Herbicide Toxicity, Environmental Sustainability, Microbial Ecology
References
Annett, R., Habibi, H. R., & Hontela, A. (2014). Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Environmental Reviews, 22(2), 1–17. https://doi.org/10.1139/er-2013-0060
Balbuena, M. S., Tison, L., Hahn, M. L., Greggers, U., Menzel, R., & Farina, W. M. (2015). Effects of sub-lethal doses of glyphosate on honeybee navigation. Journal of Experimental Biology, 218(17), 2799–2805. https://doi.org/10.1242/jeb.117291
Battaglin, W. A., Meyer, M. T., Kuivila, K. M., & Dietze, J. E. (2014). Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. Journal of the American Water Resources Association, 50(2), 275–290. https://doi.org/10.1111/jawr.12159
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 3. https://doi.org/10.1186/s12302-016-0070-0
Claus, S. P., Ellero, S. L., Berger, B., Krause, L., Bruttin, A., Molina, J., & Nicholson, J. K. (2011). Colonization-induced host-gut microbial metabolic interaction. mBio, 2(2), e00271–10. https://doi.org/10.1128/mBio.00271-10
Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microbes—the impact of the gut microbiota on brain and behavior. Nature Reviews Neuroscience, 13(10), 701–712. https://doi.org/10.1038/nrn3346
Duke, S. O., & Powles, S. B. (2008). Glyphosate: A once-in-a-century herbicide. Pest Management Science, 64(4), 319–325. https://doi.org/10.1002/ps.1528
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289–306. https://doi.org/10.4161/gmic.19897
Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., & Schönbrunn, E. (2006). Molecular basis for the herbicide resistance of EPSP synthase. Proceedings of the National Academy of Sciences, 103(35), 13010–13015. https://doi.org/10.1073/pnas.0605312103
Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35–120. https://doi.org/10.1007/0-387-21602-0_2
Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., ... & Straif, K. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology, 16(5), 490–491. https://doi.org/10.1016/S1470-2045(15)70134-8
Jezierska-Tys, S., Joniec, J., Mocek-Plóciniak, A., Galazka, A., Bednarz, J., & Furtak, K. (2021). Microbial activity and community level physiological profiles (CLPP) of soil under the cultivation of spring rape with the Roundup 360 SL herbicide. Journal of Environmental Health Science and Engineering, 19(2), 2013–2026. https://doi.org/10.1007/s40201-021-00753-3
Johal, G. S., & Huber, D. M. (2009). Glyphosate effects on diseases of plants. European Journal of Agronomy, 31(3), 144–152. https://doi.org/10.1016/j.eja.2009.02.009
Kremer, R. J., & Means, N. E. (2009). Glyphosate and microbial communities. Weed Research, 49(6), 573–580. https://doi.org/10.1111/j.1365-3180.2009.00714.x
Krüger, M., Shehata, A. A., Schrödl, W., & Rodloff, A. (2013). Glyphosate suppresses beneficial gut bacteria while increasing the levels of pathogens. Current Microbiology, 66(4), 350–358. https://doi.org/10.1007/s00284-012-0277-4
Mao, Q., Manservisi, F., Panzacchi, S., Mandrioli, D., Menghetti, I., Vornoli, A., & Belpoggi, F. (2018). The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague-Dawley rats. Environmental Health, 17(1), 23. https://doi.org/10.1186/s12940-018-0095-0
Mason, L. M., Bainard, L. D., & Hamel, C. (2012). The impact of glyphosate on mycorrhizal fungi. Agriculture, Ecosystems & Environment, 163, 20-27.
Márquez, C., Díaz, C., & Soto, D. (2017). Glyphosate in aquatic ecosystems: effects on phytoplankton, cyanobacteria, and water quality. Ecotoxicology and Environmental Safety, 142, 146–155. https://doi.org/10.1016/j.ecoenv.2017.04.025
Mesnage, R., & Antoniou, M. N. (2017). Facts and fallacies in the debate on glyphosate toxicity. Frontiers in Public Health, 5, 316. https://doi.org/10.3389/fpubh.2017.00316
Mesnage, R., Defarge, N., Rocque, L. M., & de Vendômois, J. S. (2015). Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food and Chemical Toxicology, 84, 133–153. https://doi.org/10.1016/j.fct.2015.08.012
Motta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115
Neves, R. T., Rondon, J. N., Cereda, M. P., & Costa, F. A. (2019). Impact of Glyphosate Herbicide on Growth and Rhizome Production in Arrowroot (Maranta arundinacea L.). Advances in Herbal Research, 2(1), 1-5. https://doi.org/10.25163/ahi.2120761628300919
Pleasants, J. M., & Oberhauser, K. S. (2013). Milkweed loss in agricultural fields due to herbicide use: Effect on the monarch butterfly population. Insect Conservation and Diversity, 6(2), 135–144. https://doi.org/10.1111/j.1752-4598.2012.00196.x
Ratcliff, A. W., Busse, M. D., & Shestak, C. J. (2006). Glyphosate and soil enzymes. Biology and Fertility of Soils, 42(3), 177–183. https://doi.org/10.1007/s00374-005-0028-y
Relyea, R. A. (2005). The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecological Applications, 15(4), 1118–1124. https://doi.org/10.1890/04-1299
Samsel, A., & Seneff, S. (2013). Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdisciplinary Toxicology, 6(4), 159–184. https://doi.org/10.2478/intox-2014-0009
Shehata, A. A., Schrödl, W., Aldin, A. A., Hafez, H. M., & Krüger, M. (2013). The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota. Current Microbiology, 66(4), 350–358. https://doi.org/10.1007/s00284-012-0277-4
Shehata, A. A., Schrödl, W., Aldin, A. A., Hafez, H. M., & Krüger, M. (2013). The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Current Microbiology, 66(4), 350–358. https://doi.org/10.1007/s00284-012-0277-2
Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309
Vera, M. S., Lagomarsino, L., Sylvester, M., Pérez, G. L., Rodríguez, P., Mugni, H., & Pizarro, H. (2010). New evidences of Roundup impact on freshwater algae. Environmental Pollution, 158(8), 2355–2362. https://doi.org/10.1016/j.envpol.2010.03.006
Zobiole, L. H. S., Bonini, E. A., & de Oliveira, R. S. (2011). Glyphosate effects on soil microbial biomass and enzymatic activities. Applied Soil Ecology, 48(1), 28–35. https://doi.org/10.1016/j.apsoil.2011.02.002