Diatoms Role for Silica Cycle Towards Predicting Impacts of Climate Change on Marine Productivity – A Review
Prabal Barua1*
Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110298
Submitted: 04 January 2025 Revised: 18 March 2025 Published: 20 March 2025
Abstract
Diatoms are a diverse group of photosynthetic microorganisms that play a crucial role in global biogeochemical cycles, particularly the silica cycle. These microscopic algae are characterized by their intricate cell walls made of biogenic silica, which influences nutrient cycling, sediment formation, and the productivity of aquatic ecosystems. As primary producers, diatoms contribute significantly to oxygen production and carbon sequestration, making them essential for maintaining ecological balance in marine and freshwater environments. Their rapid reproduction and high efficiency in photosynthesis support diverse food webs and sustain marine biodiversity. The silica cycle, largely driven by diatoms, regulates the availability of dissolved silica in aquatic systems. By extracting silica from their surroundings, diatoms build their elaborate frustules, which eventually settle to the ocean floor upon their death, forming diatomaceous sediments. These sediments play a role in long-term carbon storage and influence oceanic chemical composition. Additionally, diatoms have gained interest in biotechnology and nanotechnology due to their unique silica structures, which have potential applications in drug delivery, biosensors, and renewable energy technologies. Despite their ecological and industrial significance, diatom populations are vulnerable to environmental changes, including shifts in ocean temperature, nutrient availability, and acidification. Understanding their role in the silica cycle and their responses to changing conditions is crucial for predicting the impacts of climate change on marine productivity. This review explores the biological processes that enable diatoms to shape the silica cycle, their ecological importance, and their potential applications in modern science and technology. By examining their contributions to ecosystem stability and industrial innovation, this article highlights why diatoms remain one of nature’s most important silica architects.
Keywords: Diatoms, Silica cycle, Biogenic silica, Carbon sequestration, Marine ecosystems.
References
Amin, S. A., Parker, M. S., & Armbrust, E. V. (2012). Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews, 76(3), 667-684.
Antonelli, M., C. E. Wetzel, L. Ector, A. J. Teuling,, Pfister, L. (2022). On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecological Indicators, 75 (3), 73–81
Armbrust, E. (2009). The life of diatoms in the world's oceans. Nature, 459(7244), 185- 192.
Andreozzi, P., Ricci, C., Porcel, J. E. M., Moretti, P., Di Silvio, D., Amenitsch, H., et al. (2019). Mechanistic study of the nucleation and conformational changes of polyamines in presence of phosphate ions. J. Colloid Interface Sci. 5432019, 335–342. doi: 10.1016/j.jcis.2019.02.040
Armbrust, E. V. (2009). The life of diatoms in the world’s oceans. Nature 459, 185–192. doi: 10.1038/nature08057
Arrieta, J., Jeanneret, R., Roig, P., Tuval, I. (2020). On the fate of sinking diatoms: the transport of active buoyancy-regulating cells in the ocean. Phil. Trans. R. Soc A. 378(2179). doi: 10.1098/rsta.2019.0529
Austin, J., Minelli, C., Hamilton, D., Wywijas, M., Jones, H. J. (2020). Nanoparticle number concentration measurements by multi-angle dynamic light scattering. J. Nanoparticle Res. 22, 108. doi: 10.1007/s11051-020-04840-8
Ali, S.F., Jabbar, A.R.A., Hassan, F.M. (2023). Diversity Measurement Indices of Diatom Communities in The Tigris River within Wasit Province, Iraq. Bag. Sci. J. 15(2), 50-65
Bailleul, B., Berne, N., Murik, O., Petroutsos, D., Prihoda, J., Tanaka, A., et al. (2015).
Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature, 524(7565), 366-369.
Bannon, C. C., Campbell, D. A. (2017). Sinking towards destiny: High throughput measurement of phytoplankton sinking rates through time-resolved fluorescence plate spectroscopy. PloS One 12, e0185166. doi: 10.1371/journal.pone.0185166
Bowler, C., De Martino, A., Falciatore, A. (2010). Diatom cell division in an environmental context. Curr. Opin. Plant Biol. 13, 623–630. doi: 10.1016/j.pbi.2010.09.014
Bowler, C., Vardi A FAU - Allen, Andrew,E., & Allen, A. E. (2010). Oceanographic and biogeochemical insights from diatom genomes. Annual Review of Marine Science, 2, 333-365.
Brown, E. T. (2011). Lake Malawi's response to “megadrought” terminations: Sedimentary records of flooding, weathering and erosion. Palaeogeography, Palaeoclimatology, Palaeoecology, 303(1–4), 120-125.
Brunner, E., Gröger, C., Lutz, K., Richthammer, P., Spinde, K., & Sumper, M. (2009). Analytical studies of silica biomineralization: Towards an understanding of silica processing by diatoms. Applied Microbiology and Biotechnology, 84(4), 607-616.
Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F., & Vallina, S. M. (2015). Continental erosion and the Cenozoic rise of marine diatoms. Proc Natl Acad Sci U S A, 122(14), 4239-4244.
Conn, S. A., Bahena, M., Davis, J. T., Ragland, R. L., Rauschenberg, C. D., Smith, B. J. (2004). Characterisation of the diatom photophobic response to high irradiance. Diatom Res. 19, 167–179. doi: 10.1080/0269249X.2004.9705869
Du Clos, K. T., Karp-Boss, L., Gemmell, B. J. (2021). Diatoms rapidly alter sinking behavior in response to changing nutrient concentrations. Limnol Oceanogr 66, 892–900. doi: 10.1002/lno.11649
Du Clos, K. T., Karp-Boss, L., Villareal, T. A., Gemmell, B. J. (2019). Coscinodiscus wailesii mutes unsteady sinking in dark conditions. Biol. Lett. 15, 20180816. doi: 10.1098/rsbl.2018.0816
Durante, G., Basset, A., Stanca, E., Roselli, L. (2019). Allometric scaling and morphological variation in sinking rate of phytoplankton. J. Phycol. 55, 1386–1393. doi: 10.1111/jpy.12916
Falkowski, P., Katz, M., Knoll, A., Quigg, A., Raven & J., Schofield, O. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305(5682), 354-60.
Finkel, Z. V., & Kotrc, B. (2010). Silica use through time: Macroevolutionary change in the morphology of the diatom fustule. Geomicrobiology Journal, 27(6-7), 596- 608.
Friedrichs, L., Hörnig, M., Schulze, L., Bertram, A., Jansen, S., & Hamm, C. (2013). Size and biomechanic properties of diatom frustules influence food uptake by copepods. Mar Ecol Prog Ser, 481, 41-51.
Falciatore, A., d'Alcalà, M. R., Croot, P., Bowler, C. (2000). Perception of environmental signals by a marine diatom. Science 288 (5475), 2363–2366. doi: 10.1126/science.288.5475.2363
Fanesi, A., Raven, J. A., Giordano, M. (2014). Growth rate affects the responses in the green alga tretaselmis suecica to the external perturbation. Plant Cell Environ. 37 (2), 512–519. doi: 10.1111/pce.12176
Flynn, K. J., Martin-Jezequel, V. (2000). Modelling Si-n-limited growth of diatoms. J. Plankton Res. 22, 447–472. doi: 10.1093/plankt/22.3.447
Friedrichs, L., Maier, M., Hamm, C. (2012). A new method for exact three-dimensional reconstruction of diatom frustules. J. Microscopy 248 (2), 208–217. doi: 10.1111/j.1365-2818.2012.03664.x
Gemmell, B. J., Oh, G., Buskey, E. J., Villareal, T. A. (2016). Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake. Proc. R. Soc B. 283, 20161126. doi: 10.1098/rspb.2016.1126
Giordano, M., Beardall, J., Raven, J. A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131. doi: 10.1146/annurev.arplant.56.032604.144052
Hamano, R., Shoumura, S., Takeda, Y., Yamazaki, T., Hirayama, K., Hanada, Y., et al. (2021). Sinking of four species of living diatom cells directly observed by a “tumbled” optical microscope. Microsc Microanal 27, 1154–1160. doi: 10.1017/S1431927621012150
Hammer, O., Harper, D. A. T., Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:9
Hu, J., Song, Z., Zhou, J., Soininen, J., Tan, H., Lu, C. (2022). Difference in diversity and community assembly processes between plankton and benthic diatoms in the upper reach of the Jinsha River, Chine. Hydrobiologia, 40(3), 55-65
Hasan, M.M., Gani, M.A., Alfasane, M.A., Ayesha, M., Nahar, K. (2023) Benthic diatom communities and a comparative seasonal-based ecological quality assessment of a transboundary river in Bangladesh. PLoS ONE, 18(10), 90-120.
Hervé, V., Derr, J., Douady, S., Quinet, M., Moisan, L., Lopez, P. J. (2012). Multiparametric analyses reveal the ph-dependence of silicon biomineralization in diatoms. PloS One 7, e46722. doi: 10.1371/journal.pone.0046722
Hildebrand, M., Lerch, S. J. L., Shrestha, R. P. (2018). Understanding diatom cell wall silicification-moving forward. Front. Mar. Sci. 5, 125. doi: 10.1093/bbb/zbab069
Janech, M. G., Krell, A., Mock, T., Kang, J., & Raymond, J. A. (2006). Ice-binding proteins from sea ice diatoms (bacillariophyceae). Journal of Phycology, 42(2), 410-416.
Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L., Armstrong, R. A. (2006). Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions: diagnosing phytoplankton functional groups. Global Biogeochem. Cycles 20(2). doi: 10.1029/2005GB002532
Karthick, B. (2009). Genome sequencing of cells that live inside glass cages reveals their past history. Current Science, 96, 334–337.
Kröger, N., & Poulsen, N. (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annual Review of Genetics, 42, 83-107.
Lazarus, D., Barron, J., Renaudie, J., Diver, P., & Türke, A. (2013). Cenozoic planktonic marine diatom diversity and correlation to climate change. PloS One, 9(1), e84857.
Laurenceau-Cornec, E. C., Le Moigne, F. A. C., Gallinari, M., Moriceau, B., Toullec, J., Iversen, M. H., et al. (2020). New guidelines for the application of stokes' models to the sinking velocity of marine aggregates. Limnol Oceanogr 65, 1264–1285. doi: 10.1002/lno.11388
Lavoie, M., Raven, J. A. (2020). How can large-celled diatoms rapidly modulate sinking rates episodically? J. Exp. Bot. 71, 3386–3389. doi: 10.1093/jxb/eraa129
Lavoie, M., Raven, J. A., Levasseur, M. (2016). Energy cost and putative benefits of cellular mechanisms modulating buoyancy in a flagellate marine phytoplankton. J. Phycol. 52, 239–251. doi: 10.1111/jpy.12390
Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M., Durrieu de Madron, X., et al. (2018). Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9, 953. doi: 10.1038/s41467-018-03376-9
Lopez, P. J., Descles J FAU - Allen, Andrew,E., FAU, A. A., & Bowler, C. (2005).
Prospects in diatom research. Current Opinion in Biotechnology, 16(2), 180-186.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., et al. (2016). Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. U.S.A. 113, E1516–E1525. doi: 10.1073/pnas.1509523113
Martin-Jézéquel, V., Hildebrand, M., & Brzezinski, M. A. (2000). Silicon metabolism in diatoms: Implications for growth. Journal of Phycology, 36(5), 821-840.
Medlin, L. K. (2016). Evolution of the diatoms: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 55(1), 79-103.
Milligan, A. J., & Morel, F. M. M. (2002). A proton buffering role for silica in diatoms. Science, 297(5588), 1848-1850.
Nunn, B. L., FAU, A. J., FAU, S. S., Tsai S FAU - Strzepek, Robert,F., FAU, S. R., FAU, B. P., et al. (2009). Deciphering diatom biochemical pathways via whole-cell proteomics. Aquatic microbial ecology, 55(3), 241-253.
Rabosky, D. L., & Sorhannus, U. (2009). Diversity dynamics of marine planktonic
diatoms across the cenozoic. Nature, 457(7226), 183-186.
Raven, J. A., & Giordano, M. (2009). Biomineralization by photosynthetic organisms: Evidence of coevolution of the organisms and their environment? Geobiology, 7(2), 140-154.
Shrestha, R. P., & Hildebrand, M. (2015). Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryotic Cell, 14(1), 29-40.
Tokatli, C., Solak, C.N., Yilmaz, E., Atici, T., Dayioglu, H. (2022). Research into the Epipelic Diatom of the Meric and Tunca Rivers and the Application of the Biological Diatom Index in Water Quality Assessment. Istanbul University Press. Aquat Sci Eng. 35(1), 19–26.
Vandevenne, F. I., FAU, B. A., Schoelynck, J. F., Smis, A. F., Ryken N FAU,- Van
Damme, Van Damme, S. F., et al. (2013). Grazers: Biocatalysts of terrestrial silica cycling. Proc Biol Sci, 280(1772), 20132083.
Vardi, A., Thamatrakoln K FAU - Bidle, Kay,D., FAU, B. K., & Falkowski, P. G. (2008). Diatom genomes come of age. Genome Biology, 9(12), 245.
Wilhelm, C., Buchel, C. F., Fisahn, J. F., Goss, R. F., Jakob, T. F., Laroche, J. F., et al. (2006). The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist, 157(2), 91-124
Yang, J., Yong, Ji., Yan, R., Liu, X., Zhang, J., Naichen, Wu. (2022). Applicability of Benthic Diatom Indices Combined with Water Quality Valuation for Dish Lake from Nanjishan Nature Reserve, Lake Poyang. Water, 14(10). 273-290.