Microbial Bioactives | Online ISSN 2209-2161
REVIEWS   (Open Access)

Viral Metagenomics: Analyzing the virome in different ecosystems and its impact on microbial communities

Anwar Shalan F. 1*, Samah Hussein Kadhim 1

+ Author Affiliations

Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110371

Submitted: 03 January 2025 Revised: 16 February 2025  Published: 18 February 2025 


Abstract

Background: Viral metagenomics is an emerging field that enables comprehensive analysis of viral populations in diverse ecosystems. High-throughput sequencing has revealed that viruses are the most abundant biological entities on Earth, profoundly influencing microbial community dynamics and ecosystem functioning. Methods: This review synthesizes findings from viral metagenomic studies conducted across marine, soil, and human-associated habitats. Data from next-generation sequencing and bioinformatic pipelines were examined to assess viral diversity, abundance, and their ecological roles in microbial regulation, nutrient cycling, and host interactions. Results: Marine ecosystems harbor remarkable viral diversity, with approximately 15,000 viral genotypes per milliliter of seawater, regulating bacterial populations and contributing to global nutrient and carbon cycling. In soil, an estimated 10 viral particles per gram shape microbial interactions, influencing nutrient turnover and plant health. Within the human microbiome, trillions of viruses, particularly bacteriophages, modulate microbial composition and may affect host health by altering microbial dynamics. Discussion: The virome’s diversity and ecological influence highlight viruses as key regulators of microbial communities. Their roles extend beyond predation to genetic exchange and ecosystem resilience. Insights from viral metagenomics also carry applied significance for agriculture, environmental sustainability, and human health interventions. Conclusion: Viral metagenomics continues to expand our understanding of ecosystems by uncovering the hidden virosphere. By elucidating viral diversity and their interactions with microbial hosts, this field underscores viruses’ fundamental roles in shaping ecological balance and human well-being.

Keywords: Viral metagenomics, Virome, Microbial communities, Ecosystems, Human microbiome

References

Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., Huntemann, M., Mikhailova, N., … Kyrpides, N. C. (2016). Uncovering Earth's virome. Nature, 536(7617), 425–430. https://doi.org/10.1038/nature19094

Emerson, J. B., Roux, S., Brum, J. R., Bolduc, B., Woodcroft, B. J., Jang, H. B., … Sullivan, M. B. (2018). Host-linked soil viral ecology along a permafrost thaw gradient. Nature Microbiology, 3(8), 870–880. https://doi.org/10.1038/s41564-018-0190-y

Duerkop, B. A., & Hooper, L. V. (2013). Resident viruses and their interactions with the immune system. Nature Immunology, 14(7), 654–659. https://doi.org/10.1038/ni.2614

Falkow, S. (2012). The microbial world: A symposium commemorating the 100th anniversary of Martinus Beijerinck. American Society for Microbiology.

Suttle, C. A. (2007). Marine viruses—Major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801–812. https://doi.org/10.1038/nrmicro1750

Thingstad, T. F. (2000). Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography, 45(6), 1320–1328. https://doi.org/10.4319/lo.2000.45.6.1320

Hambly, E., Suttle, C. A., & Baross, J. A. (2001). Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater lakes. Applied and Environmental Microbiology, 67(8), 3692–3695.

Brüssow, H., Canchaya, C., & Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiology and Molecular Biology Reviews, 68(3), 560–602. https://doi.org/10.1128/MMBR.68.3.560-602.2004

Breitbart, M. (2012). Marine viruses: Truth or dare. Annual Review of Marine Science, 4, 425–448. https://doi.org/10.1146/annurev-marine-120709-142805

Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2), 127–181. https://doi.org/10.1016/j.femsre.2003.08.001

Cottrell, M. T., & Suttle, C. A. (2016). Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Environmental Microbiology, 9(8), 3165–3173.

Secor, P. R., Sweere, J. M., Michaels, L. A., Malkovskiy, A. V., Lazzareschi, D., Katznelson, E., … Bollyky, P. L. (2015). Filamentous bacteriophage promote biofilm assembly and function. Cell Host & Microbe, 18(5), 549–559. https://doi.org/10.1016/j.chom.2015.10.013

Chatterjee, A., Willett, J. L., Dunny, G. M., & Duerkop, B. A. (2021). Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genetics, 17(1), e1009204. https://doi.org/10.1371/journal.pgen.1009204

Pride, D. T., Salzman, J., Haynes, M., Rohwer, F., Davis-Long, C., White, R. A., … Relman, D. A. (2012). Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. The ISME Journal, 6(5), 915–926. https://doi.org/10.1038/ismej.2011.169

Ott, S. J., Waetzig, G. H., Rehman, A., Moltzau-Anderson, J., Bharti, R., Grasis, J. A., … Schreiber, S. (2017). Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology, 152(4), 799–811. https://doi.org/10.1053/j.gastro.2016.11.010

Díaz-Muñoz, S. L. (2019). Uncovering virus-virus interactions by unifying approaches and harnessing high-throughput tools. mSystems, 4(3), e00121–19. https://doi.org/10.1128/mSystems.00121-19

Monaco, C. L., Gootenberg, D. B., Zhao, G., Handley, S. A., Ghebremichael, M. S., Lim, E. S., … Virgin, H. W. (2016). Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host & Microbe, 19(3), 311–322. https://doi.org/10.1016/j.chom.2016.02.011

Lysholm, F., Wetterbom, A., Lindau, C., Darban, H., Bjerkner, A., Fahlander, K., … Andersson, B. (2012). Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PLoS ONE, 7(2), e30875. https://doi.org/10.1371/journal.pone.0030875

Chatterjee, A., Willett, J. L., Nguyen, U. T., Monogue, B., Palmer, K. L., Dunny, G. M., & Duerkop, B. A. (2020). Parallel genomics uncover novel enterococcal-bacteriophage interactions. mBio, 11(2), e03120–19. https://doi.org/10.1128/mBio.03120-19

Soffer, N., Woolston, J., Li, M., Das, C., & Sulakvelidze, A. (2017). Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS ONE, 12(3), e0175256. https://doi.org/10.1371/journal.pone.0175256

Bacnik, K., Kutnjak, D., Pecman, A., Mehle, N., Žnidaric, M. T., Aguirre, I. G., & Ravnikar, M. (2020). Viromics and infectivity analysis reveal the release of infective plant viruses from wastewater into the environment. Water Research, 177, 115628. https://doi.org/10.1016/j.watres.2020.115628

Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J. M., Segall, A. M., Mead, D., … & Rohwer, F. (2002). Genomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences, 99(22), 14250–14255. https://doi.org/10.1073/pnas.202488399

Brum, J. R., & Sullivan, M. B. (2015). Rising to the challenge: Accelerated pace of discovery transforms marine virology. Nature Reviews Microbiology, 13(3), 147–159. https://doi.org/10.1038/nrmicro3404

Chang, Y. (2020). Bacteriophage-derived endolysins applied as potent biocontrol agents to enhance food safety. Microorganisms, 8(5), 724. https://doi.org/10.3390/microorganisms8050724

Dunay, E., Apakupakul, K., Leard, S., Palmer, J. L., & Deem, S. L. (2018). Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth, 15, 148–162. https://doi.org/10.1007/s10393-017-1306-1

Edwards, R. A., & Rohwer, F. (2005). Viral metagenomics. Nature Reviews Microbiology, 3(6), 504–510. https://doi.org/10.1038/nrmicro1163

Fuchsman, C. A., Palevsky, H. I., Widner, B., Duffy, M., Carlson, M. C., Neibauer, J. A., … & Rocap, G. (2019). Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone. The ISME Journal, 13(11), 2714–2726. https://doi.org/10.1038/s41396-019-0452-6

Gregory, A. C., Solonenko, S. A., Ignacio-Espinoza, J. C., LaButti, K., Copeland, A., Sudek, S., … & Sullivan, M. B. (2016). Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics, 17, 1–13. https://doi.org/10.1186/s12864-016-3286-x

Guo, J., Bolduc, B., Zayed, A. A., Varsani, A., Dominguez-Huerta, G., Delmont, T. O., … & Roux, S. (2021). VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome, 9, 1–13. https://doi.org/10.1186/s40168-020-00990-y

Gustafson, L. L., Creekmore, L. H., Snekvik, K. R., Ferguson, J. A., Warg, J. V., Blair, M., … & Winton, J. R. (2018). A systematic surveillance programme for infectious salmon anaemia virus supports its absence in the Pacific Northwest of the United States. Journal of Fish Diseases, 41(2), 337–346. https://doi.org/10.1111/jfd.12733

Hily, J. M., Candresse, T., Garcia, S., Vigne, E., Tannière, M., Komar, V., … & Lemaire, O. (2018). High-throughput sequencing and the viromic study of grapevine leaves: From the detection of grapevine-infecting viruses to the description of a new environmental Tymovirales member. Frontiers in Microbiology, 9, 1782. https://doi.org/10.3389/fmicb.2018.01782

Hurwitz, B. L., et al. (2013). Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. The ISME Journal, 7(7), 1272–1282.

Hyman, P., Trubl, G., & Abedon, S. T. (2021). Virus-like particle: Evolving meanings in different disciplines. Therapy, Applications, and Research, 2(1), 11–15. https://doi.org/10.1089/phage.2020.0026

Johnson, P. T., de Roode, J. C., & Fenton, A. (2015). Why infectious disease research needs community ecology. Science, 349, 1259504. https://doi.org/10.1126/science.1259504

Koskella, B., Lin, D. M., Buckling, A., & Thompson, J. N. (2012). The costs of evolving resistance in heterogeneous parasite environments. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1896–1903. https://doi.org/10.1098/rspb.2011.2259

Mokili, J. L., et al. (2012). Metagenomic analysis of the human gut microbiome. The ISME Journal, 6(1), 179–189.

Paez-Espino, D., et al. (2016). Uncovering Earth's virome. Nature, 536(7617), 425–430. https://doi.org/10.1038/nature19094

Pratama, A. A., Bolduc, B., Zayed, A. A., Zhong, Z. P., Guo, J., Vik, D. R., … & Sullivan, M. B. (2021). Expanding standards in viromics: In silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ, 9, e11447. https://doi.org/10.7717/peerj.11447

Pratama, A. A., Terpstra, J., de Oliveria, A. L. M., & Salles, J. F. (2020). The role of rhizosphere bacteriophages in plant health. Trends in Microbiology, 28(9), 709–718. https://doi.org/10.1016/j.tim.2020.04.005

Rampelli, S., et al. (2016). Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Current Biology, 25(13), 1682–1693. https://doi.org/10.1016/j.cub.2015.04.055

Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2020). VirFinder: A novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 8(1), 90.

Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M., Krupovic, M., … & Eloe-Fadrosh, E. A. (2019). Minimum information about an uncultivated virus genome (MIUViG). Nature Biotechnology, 37(1), 29–37. https://doi.org/10.1038/nbt.4306

Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., & Sullivan, M. B. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 537(7622), 689–693. https://doi.org/10.1038/nature19366

Sokolow, S. H., Nova, N., Pepin, K. M., Peel, A. J., Pulliam, J. R., Manlove, K., … & De Leo, G. A. (2019). Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B, 374(1782), 20180342. https://doi.org/10.1098/rstb.2018.0342

Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F., & Firestone, M. K. (2019). Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences, 116(51), 25900–25908. https://doi.org/10.1073/pnas.1908291116

Trubl, G., Hyman, P., Roux, S., & Abedon, S. T. (2020). Coming-of-age characterization of soil viruses: A user's guide to virus isolation, detection within metagenomes, and viromics. Soil Systems, 4(2), 23. https://doi.org/10.3390/soilsystems4020023

Wilkins, L. G. E., et al. (2019). Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environmental Microbiology, 21(10), 4012–4023.

Wommack, K. E., & Colwell, R. R. (2000). Virioplankton: Viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 64(1), 69–114. https://doi.org/10.1128/MMBR.64.1.69-114.2000

Wommack, K. E., et al. (2015). VIROME: A standard operating procedure for analysis of viral metagenome sequences. Standards in Genomic Sciences, 10(1), 1.

Zhang, T., Breitbart, M., Lee, W. H., Run, J. Q., Wei, C. L., Soh, S. W. L., … & Ruan, Y. (2006). RNA viral community in human feces: Prevalence of plant pathogenic viruses. PLoS Biology, 4(1), e3. https://doi.org/10.1371/journal.pbio.0040003

Zhang, Y. Z., Chen, Y. M., Wang, W., Qin, X. C., & Holmes, E. C. (2019). Expanding the RNA virosphere by unbiased metagenomics. Annual Review of Virology, 6, 119–139. https://doi.org/10.1146/annurev-virology-092818-015851

Guo, J., Bolduc, B., Zayed, A. A., Varsani, A., Dominguez-Huerta, G., Delmont, T. O., … & Roux, S. (2021). VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome, 9, 1–13. https://doi.org/10.1186/s40168-020-00990-y

Hyman, P., Trubl, G., & Abedon, S. T. (2021). Virus-like particle: Evolving meanings in different disciplines. Therapy, Applications, and Research, 2(1), 11–15. https://doi.org/10.1089/phage.2020.0026


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
60
View
0
Share