Viral Metagenomics: Analyzing the virome in different ecosystems and its impact on microbial communities
Anwar Shalan F. 1*, Samah Hussein Kadhim 1
Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110371
Submitted: 03 January 2025 Revised: 16 February 2025 Published: 18 February 2025
Abstract
Background: Viral metagenomics is an emerging field that enables comprehensive analysis of viral populations in diverse ecosystems. High-throughput sequencing has revealed that viruses are the most abundant biological entities on Earth, profoundly influencing microbial community dynamics and ecosystem functioning. Methods: This review synthesizes findings from viral metagenomic studies conducted across marine, soil, and human-associated habitats. Data from next-generation sequencing and bioinformatic pipelines were examined to assess viral diversity, abundance, and their ecological roles in microbial regulation, nutrient cycling, and host interactions. Results: Marine ecosystems harbor remarkable viral diversity, with approximately 15,000 viral genotypes per milliliter of seawater, regulating bacterial populations and contributing to global nutrient and carbon cycling. In soil, an estimated 10 viral particles per gram shape microbial interactions, influencing nutrient turnover and plant health. Within the human microbiome, trillions of viruses, particularly bacteriophages, modulate microbial composition and may affect host health by altering microbial dynamics. Discussion: The virome’s diversity and ecological influence highlight viruses as key regulators of microbial communities. Their roles extend beyond predation to genetic exchange and ecosystem resilience. Insights from viral metagenomics also carry applied significance for agriculture, environmental sustainability, and human health interventions. Conclusion: Viral metagenomics continues to expand our understanding of ecosystems by uncovering the hidden virosphere. By elucidating viral diversity and their interactions with microbial hosts, this field underscores viruses’ fundamental roles in shaping ecological balance and human well-being.
Keywords: Viral metagenomics, Virome, Microbial communities, Ecosystems, Human microbiome
References
Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., Huntemann, M., Mikhailova, N., … Kyrpides, N. C. (2016). Uncovering Earth's virome. Nature, 536(7617), 425–430. https://doi.org/10.1038/nature19094
Emerson, J. B., Roux, S., Brum, J. R., Bolduc, B., Woodcroft, B. J., Jang, H. B., … Sullivan, M. B. (2018). Host-linked soil viral ecology along a permafrost thaw gradient. Nature Microbiology, 3(8), 870–880. https://doi.org/10.1038/s41564-018-0190-y
Duerkop, B. A., & Hooper, L. V. (2013). Resident viruses and their interactions with the immune system. Nature Immunology, 14(7), 654–659. https://doi.org/10.1038/ni.2614
Falkow, S. (2012). The microbial world: A symposium commemorating the 100th anniversary of Martinus Beijerinck. American Society for Microbiology.
Suttle, C. A. (2007). Marine viruses—Major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801–812. https://doi.org/10.1038/nrmicro1750
Thingstad, T. F. (2000). Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography, 45(6), 1320–1328. https://doi.org/10.4319/lo.2000.45.6.1320
Hambly, E., Suttle, C. A., & Baross, J. A. (2001). Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater lakes. Applied and Environmental Microbiology, 67(8), 3692–3695.
Brüssow, H., Canchaya, C., & Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiology and Molecular Biology Reviews, 68(3), 560–602. https://doi.org/10.1128/MMBR.68.3.560-602.2004
Breitbart, M. (2012). Marine viruses: Truth or dare. Annual Review of Marine Science, 4, 425–448. https://doi.org/10.1146/annurev-marine-120709-142805
Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2), 127–181. https://doi.org/10.1016/j.femsre.2003.08.001
Cottrell, M. T., & Suttle, C. A. (2016). Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Environmental Microbiology, 9(8), 3165–3173.
Secor, P. R., Sweere, J. M., Michaels, L. A., Malkovskiy, A. V., Lazzareschi, D., Katznelson, E., … Bollyky, P. L. (2015). Filamentous bacteriophage promote biofilm assembly and function. Cell Host & Microbe, 18(5), 549–559. https://doi.org/10.1016/j.chom.2015.10.013
Chatterjee, A., Willett, J. L., Dunny, G. M., & Duerkop, B. A. (2021). Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genetics, 17(1), e1009204. https://doi.org/10.1371/journal.pgen.1009204
Pride, D. T., Salzman, J., Haynes, M., Rohwer, F., Davis-Long, C., White, R. A., … Relman, D. A. (2012). Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. The ISME Journal, 6(5), 915–926. https://doi.org/10.1038/ismej.2011.169
Ott, S. J., Waetzig, G. H., Rehman, A., Moltzau-Anderson, J., Bharti, R., Grasis, J. A., … Schreiber, S. (2017). Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology, 152(4), 799–811. https://doi.org/10.1053/j.gastro.2016.11.010
Díaz-Muñoz, S. L. (2019). Uncovering virus-virus interactions by unifying approaches and harnessing high-throughput tools. mSystems, 4(3), e00121–19. https://doi.org/10.1128/mSystems.00121-19
Monaco, C. L., Gootenberg, D. B., Zhao, G., Handley, S. A., Ghebremichael, M. S., Lim, E. S., … Virgin, H. W. (2016). Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host & Microbe, 19(3), 311–322. https://doi.org/10.1016/j.chom.2016.02.011
Lysholm, F., Wetterbom, A., Lindau, C., Darban, H., Bjerkner, A., Fahlander, K., … Andersson, B. (2012). Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PLoS ONE, 7(2), e30875. https://doi.org/10.1371/journal.pone.0030875
Chatterjee, A., Willett, J. L., Nguyen, U. T., Monogue, B., Palmer, K. L., Dunny, G. M., & Duerkop, B. A. (2020). Parallel genomics uncover novel enterococcal-bacteriophage interactions. mBio, 11(2), e03120–19. https://doi.org/10.1128/mBio.03120-19
Soffer, N., Woolston, J., Li, M., Das, C., & Sulakvelidze, A. (2017). Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS ONE, 12(3), e0175256. https://doi.org/10.1371/journal.pone.0175256
Bacnik, K., Kutnjak, D., Pecman, A., Mehle, N., Žnidaric, M. T., Aguirre, I. G., & Ravnikar, M. (2020). Viromics and infectivity analysis reveal the release of infective plant viruses from wastewater into the environment. Water Research, 177, 115628. https://doi.org/10.1016/j.watres.2020.115628
Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J. M., Segall, A. M., Mead, D., … & Rohwer, F. (2002). Genomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences, 99(22), 14250–14255. https://doi.org/10.1073/pnas.202488399
Brum, J. R., & Sullivan, M. B. (2015). Rising to the challenge: Accelerated pace of discovery transforms marine virology. Nature Reviews Microbiology, 13(3), 147–159. https://doi.org/10.1038/nrmicro3404
Chang, Y. (2020). Bacteriophage-derived endolysins applied as potent biocontrol agents to enhance food safety. Microorganisms, 8(5), 724. https://doi.org/10.3390/microorganisms8050724
Dunay, E., Apakupakul, K., Leard, S., Palmer, J. L., & Deem, S. L. (2018). Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth, 15, 148–162. https://doi.org/10.1007/s10393-017-1306-1
Edwards, R. A., & Rohwer, F. (2005). Viral metagenomics. Nature Reviews Microbiology, 3(6), 504–510. https://doi.org/10.1038/nrmicro1163
Fuchsman, C. A., Palevsky, H. I., Widner, B., Duffy, M., Carlson, M. C., Neibauer, J. A., … & Rocap, G. (2019). Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone. The ISME Journal, 13(11), 2714–2726. https://doi.org/10.1038/s41396-019-0452-6
Gregory, A. C., Solonenko, S. A., Ignacio-Espinoza, J. C., LaButti, K., Copeland, A., Sudek, S., … & Sullivan, M. B. (2016). Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics, 17, 1–13. https://doi.org/10.1186/s12864-016-3286-x
Guo, J., Bolduc, B., Zayed, A. A., Varsani, A., Dominguez-Huerta, G., Delmont, T. O., … & Roux, S. (2021). VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome, 9, 1–13. https://doi.org/10.1186/s40168-020-00990-y
Gustafson, L. L., Creekmore, L. H., Snekvik, K. R., Ferguson, J. A., Warg, J. V., Blair, M., … & Winton, J. R. (2018). A systematic surveillance programme for infectious salmon anaemia virus supports its absence in the Pacific Northwest of the United States. Journal of Fish Diseases, 41(2), 337–346. https://doi.org/10.1111/jfd.12733
Hily, J. M., Candresse, T., Garcia, S., Vigne, E., Tannière, M., Komar, V., … & Lemaire, O. (2018). High-throughput sequencing and the viromic study of grapevine leaves: From the detection of grapevine-infecting viruses to the description of a new environmental Tymovirales member. Frontiers in Microbiology, 9, 1782. https://doi.org/10.3389/fmicb.2018.01782
Hurwitz, B. L., et al. (2013). Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. The ISME Journal, 7(7), 1272–1282.
Hyman, P., Trubl, G., & Abedon, S. T. (2021). Virus-like particle: Evolving meanings in different disciplines. Therapy, Applications, and Research, 2(1), 11–15. https://doi.org/10.1089/phage.2020.0026
Johnson, P. T., de Roode, J. C., & Fenton, A. (2015). Why infectious disease research needs community ecology. Science, 349, 1259504. https://doi.org/10.1126/science.1259504
Koskella, B., Lin, D. M., Buckling, A., & Thompson, J. N. (2012). The costs of evolving resistance in heterogeneous parasite environments. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1896–1903. https://doi.org/10.1098/rspb.2011.2259
Mokili, J. L., et al. (2012). Metagenomic analysis of the human gut microbiome. The ISME Journal, 6(1), 179–189.
Paez-Espino, D., et al. (2016). Uncovering Earth's virome. Nature, 536(7617), 425–430. https://doi.org/10.1038/nature19094
Pratama, A. A., Bolduc, B., Zayed, A. A., Zhong, Z. P., Guo, J., Vik, D. R., … & Sullivan, M. B. (2021). Expanding standards in viromics: In silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ, 9, e11447. https://doi.org/10.7717/peerj.11447
Pratama, A. A., Terpstra, J., de Oliveria, A. L. M., & Salles, J. F. (2020). The role of rhizosphere bacteriophages in plant health. Trends in Microbiology, 28(9), 709–718. https://doi.org/10.1016/j.tim.2020.04.005
Rampelli, S., et al. (2016). Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Current Biology, 25(13), 1682–1693. https://doi.org/10.1016/j.cub.2015.04.055
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2020). VirFinder: A novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 8(1), 90.
Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M., Krupovic, M., … & Eloe-Fadrosh, E. A. (2019). Minimum information about an uncultivated virus genome (MIUViG). Nature Biotechnology, 37(1), 29–37. https://doi.org/10.1038/nbt.4306
Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., & Sullivan, M. B. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 537(7622), 689–693. https://doi.org/10.1038/nature19366
Sokolow, S. H., Nova, N., Pepin, K. M., Peel, A. J., Pulliam, J. R., Manlove, K., … & De Leo, G. A. (2019). Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B, 374(1782), 20180342. https://doi.org/10.1098/rstb.2018.0342
Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F., & Firestone, M. K. (2019). Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences, 116(51), 25900–25908. https://doi.org/10.1073/pnas.1908291116
Trubl, G., Hyman, P., Roux, S., & Abedon, S. T. (2020). Coming-of-age characterization of soil viruses: A user's guide to virus isolation, detection within metagenomes, and viromics. Soil Systems, 4(2), 23. https://doi.org/10.3390/soilsystems4020023
Wilkins, L. G. E., et al. (2019). Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environmental Microbiology, 21(10), 4012–4023.
Wommack, K. E., & Colwell, R. R. (2000). Virioplankton: Viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 64(1), 69–114. https://doi.org/10.1128/MMBR.64.1.69-114.2000
Wommack, K. E., et al. (2015). VIROME: A standard operating procedure for analysis of viral metagenome sequences. Standards in Genomic Sciences, 10(1), 1.
Zhang, T., Breitbart, M., Lee, W. H., Run, J. Q., Wei, C. L., Soh, S. W. L., … & Ruan, Y. (2006). RNA viral community in human feces: Prevalence of plant pathogenic viruses. PLoS Biology, 4(1), e3. https://doi.org/10.1371/journal.pbio.0040003
Zhang, Y. Z., Chen, Y. M., Wang, W., Qin, X. C., & Holmes, E. C. (2019). Expanding the RNA virosphere by unbiased metagenomics. Annual Review of Virology, 6, 119–139. https://doi.org/10.1146/annurev-virology-092818-015851
Guo, J., Bolduc, B., Zayed, A. A., Varsani, A., Dominguez-Huerta, G., Delmont, T. O., … & Roux, S. (2021). VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome, 9, 1–13. https://doi.org/10.1186/s40168-020-00990-y
Hyman, P., Trubl, G., & Abedon, S. T. (2021). Virus-like particle: Evolving meanings in different disciplines. Therapy, Applications, and Research, 2(1), 11–15. https://doi.org/10.1089/phage.2020.0026