EMAN RESEARCH PUBLISHING | <p>Biomaterials for 3D Printing of Patient-Specific Organ Models</p>
Nanotechnology and therapeutics
REVIEWS   (Open Access)

Biomaterials for 3D Printing of Patient-Specific Organ Models

Hilal Ahmad Rather 1*, Jigar Vya 2, Sudarshan Singh 3

+ Author Affiliations

Biosensors and Nanotheranostics 2(1) 1-9 https://doi.org/10.25163/biosensors.217333

Submitted: 18 March 2023  Revised: 10 May 2023  Published: 22 May 2023 

Abstract

Organ bioprinting represents a transformative approach in regenerative medicine aimed at fabricating functional tissues and organs for transplantation and disease modeling. This review provides an overview of the current state, challenges, and future prospects of organ bioprinting technology. We discuss the principles, techniques, and biomaterials utilized in organ bioprinting, emphasizing the importance of achieving biocompatibility, structural integrity, and functionality in printed constructs. Key advancements, such as multi-material bioprinting, vascularization strategies, and integration with biomanufacturing technologies, are highlighted. Additionally, we explore the role of artificial intelligence and computational modeling in optimizing bioprinting processes and designing patient-specific constructs. Regulatory and ethical considerations, along with case studies of successful organ printing, are examined to contextualize the clinical translation of bioprinted organs. Finally, future perspectives and emerging trends in organ bioprinting, including organ-on-a-chip platforms and AI-driven computational modeling, are discussed. Overall, this review underscores the transformative potential of organ bioprinting in advancing regenerative medicine and personalized healthcare.

Keywords: 3D Printing, Patient-Specific Organ Models, Biomaterials, Synthetic Polymers, Natural Biomaterials

References

Abdelkader, Mohamed, Stanislav Petrik, Daisy Nestler, and Mateusz Fijalkowski. 2024. "Ceramics 3D Printing: A Comprehensive Overview and Applications, with Brief Insights into Industry and Market" Ceramics 7, no. 1: 68-85. https://doi.org/10.3390/ceramics7010006

Agarwal, S., Saha, S., Balla, V. K., Pal, A., Barui, A., & Bodhak, S. (2020). Current Developments in 3D Bioprinting for Tissue and Organ Regeneration–A Review. Frontiers in Mechanical Engineering, 6. https://doi.org/10.3389/fmech.2020.589171.

Bhatti, S. S., & Singh, J. (2023). 3D printing of biomaterials for biomedical applications: a review. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-023-01525-z

Bozkurt, Y., & Karayel, E. (2021). 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology, 14, 1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050.

Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., Liu, C., Yang, L., Wang, P., & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9(1). https://doi.org/10.1186/s13036-015-0001-4.

Cojocaru, Elena, Jana Ghitman, Gratiela Gradisteanu Pircalabioru, Anamaria Zaharia, Horia Iovu, and Andrei Sarbu. 2023. "Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties" Polymers 15, no. 13: 2854. https://doi.org/10.3390/polym15132854

Dababneh, A., & Özbolat, I. T. (2014). Bioprinting Technology: A Current State-of-the-Art Review. Journal of Manufacturing Science and Engineering, 136(6). https://doi.org/10.1115/1.4028512

Ejiohuo, O. (2023). A perspective on the synergistic use of 3D printing and electrospinning to improve nanomaterials for biomedical applications. Nano Trends, 4, 100025. https://doi.org/10.1016/j.nwnano.2023.100025

El-Taji OM, Khattak AQ, Hussain SA. Bladder reconstruction: The past, present and future. Oncol Lett. 2015 Jul;10(1):3-10. doi: 10.3892/ol.2015.3161. Epub 2015 Apr 28. PMID: 26170968; PMCID: PMC4487078.

Eshkalak, S. K., Ghomi, E. R., Dai, Y., Choudhury, D., & Ramakrishna, S. (2020). The role of three-dimensional printing in healthcare and medicine. Materials & Design, 194, 108940. https://doi.org/10.1016/j.matdes.2020.108940

Fang W, Yang M, Wang L, Li W, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges. Int J Bioprint. 2023 May 23;9(5):759. doi: 10.18063/ijb.759. PMID: 37457925; PMCID: PMC10339415.

Genden EM, Laitman BM. Human Tracheal Transplantation. Transplantation. 2023 Aug 1;107(8):1698-1705. doi: 10.1097/TP.0000000000004509. Epub 2023 Jul 20. PMID: 36782283.

Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, Atala A, Lee SJ. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020 Feb 19;12(2):022003. doi: 10.1088/1758-5090/ab6f0d. PMID: 31972558; PMCID: PMC7039534.

Goldring, C., Duffy, P., Benvenisty, N., Andrews, P. W., Ben-David, U., Eakins, R., French, N. S., Hanley, N. A., Kelly, L., Kitteringham, N. R., Kurth, J., Ladenheim, D., Laverty, H., McBlane, J., Narayanan, G., Patel, S., Reinhardt, J., Rossi, A., Sharpe, M., & Park, B. K. (2011). Assessing the safety of stem cell therapeutics. Cell Stem Cell, 8(6), 618–628. https://doi.org/10.1016/j.stem.2011.05.012.

Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews. Molecular Cell Biology, 7(3), 211–224. https://doi.org/10.1038/nrm1858

Gueche, Yanis A., Noelia M. Sanchez-Ballester, Bernard Bataille, Adrien Aubert, Laurent Leclercq, Jean-Christophe Rossi, and Ian Soulairol. 2021. "Selective Laser Sintering of Solid Oral Dosage Forms with Copovidone and Paracetamol Using a CO2 Laser" Pharmaceutics 13, no. 2: 160.  https://doi.org/10.3390/pharmaceutics13020160.

Guvendiren, M., Molde, J., Soares, R. M. D., & Kohn, J. (2016). Designing biomaterials for 3D printing. ACS Biomaterials Science & Engineering, 2(10), 1679–1693. https://doi.org/10.1021/acsbiomaterials.6b00121.

Hernández-Vargas, J., González-Campos, J. B., Lara-Romero, J., & Ponce-Ortega, J. M. (2014). A Mathematical Programming Approach for the Optimal Synthesis of Nanofibers through Electrospinning Process. In Computer-aided chemical engineering/Computer aided chemical engineering (pp. 1747–1752). https://doi.org/10.1016/b978-0-444-63455-9.50126-4

Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue Engineering in Liver Regenerative Medicine: Insights into Novel Translational Technologies. Cells. 2020 Jan 27;9(2):304. doi: 10.3390/cells9020304.

Jin, Z., Li, Y., Kang, Y. M., Liu, L., Fu, J., Yao, X., Ai-Guo, Z., & He, Y. (2021). 3D printing of physical organ models: recent developments and challenges. Advanced Science (Weinheim), 8(17). https://doi.org/10.1002/advs.202101394

Kaliaraj, Gobi Saravanan, Dilip Kumar Shanmugam, Arish Dasan, and Kamalan Kirubaharan Amirtharaj Mosas. 2023. "Hydrogels—A Promising Materials for 3D Printing Technology" Gels 9, no. 3: 260. https://doi.org/10.3390/gels9030260

Li, J., Chen, M., Fan, X., & Zhou, H. (2016). Recent advances in bioprinting techniques: approaches, applications and future prospects. Journal of Translational Medicine, 14(1). https://doi.org/10.1186/s12967-016-1028-0.

Li, P. (2014). 3D Bioprinting Technologies: Patents, innovation and access. Law, Innovation and Technology, 6(2), 282–304. https://doi.org/10.5235/17579961.6.2.282.

Li, X., Liu, B., Pei, B., Chen, J., Zhou, D., Peng, J., Zhang, X., Jia, W., & Xu, T. (2020). Inkjet Bioprinting of Biomaterials. Chemical Reviews, 120(19), 10793–10833. https://doi.org/10.1021/acs.chemrev.0c00008

Liaw, C. Y., & Guvendiren, M. (2017). Current and emerging applications of 3D printing in medicine. Biofabrication, 9(2), 024102. https://doi.org/10.1088/1758-5090/aa7279.

Liu Y, Shah KM, Luo J. Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol. 2021 Dec 17;9:770655. doi: 10.3389/fbioe.2021.770655. PMID: 34976967; PMCID: PMC8719005.

Liu, F., & Wang, X. (2020). Synthetic polymers for organ 3D printing. Polymers (Basel), 12(8), 1765. https://doi.org/10.3390/polym12081765.

Marques, Inês Alexandra, Carolina Fernandes, Nuno Tiago Tavares, Ana Salomé Pires, Ana Margarida Abrantes, and Maria Filomena Botelho. 2022. "Magnetic-Based Human Tissue 3D Cell Culture: A Systematic Review" International Journal of Molecular Sciences 23, no. 20: 12681. https://doi.org/10.3390/ijms232012681

Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2020). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226, 119536. https://doi.org/10.1016/j.biomaterials.2019.119536

McGill, M. L. (2013). Copyright and Intellectual Property: the state of the discipline. Book History, 16(1), 387–427. https://doi.org/10.1353/bh.2013.0010

Mei, L., Wu, H., Yuan, Y., Hu, B., & Gu, N. (2021). Recent fabrications and applications of cardiac patch in myocardial infarction treatment. View (Beijing, China), 3(2). https://doi.org/10.1002/viw.20200153.

Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, Fercho J, Jaguszewska K, Frankiewicz M, Pawlowska E, Targonski R, Szarpak L, Dadela K, Sabiniewicz R, Kwiatkowska J. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. Int J Environ Res Public Health. 2022 Mar 11;19(6):3331. doi: 10.3390/ijerph19063331.

Munir, K., Li, Y., & Wen, C. (2017). Metallic scaffolds manufactured by selective laser melting for biomedical applications. In Elsevier eBooks (pp. 1–23). https://doi.org/10.1016/b978-0-08-101289-5.00001-9

Nikitichev, D. I., Patel, P. A., Avery, J., Robertson, L. J., Bücking, T. M., Aristovich, K., Maneas, E., Desjardins, A. E., & Vercauteren, T. (2018). Patient-Specific 3D printed models for education, research and surgical simulation. In InTech eBooks. https://doi.org/10.5772/intechopen.79667 

Özbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076.

Prohaska J, Cook C. Skin Grafting. [Updated 2023 Aug 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532874/

Pugliese, R., Beltrami, B., Regondi, S., & Lunetta, C. (2021). Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine, 2, 100011. https://doi.org/10.1016/j.stlm.2021.100011

Pugliese, R., Beltrami, B., Regondi, S., & Lunetta, C. (2021)]\. Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine, 2, 100011. https://doi.org/10.1016/j.stlm.2021.100011

Rasheed, A., Azizi, L., Turkki, P., Janka, M., Hytönen, V. P., & Tuukkanen, S. (2020). Extrusion-Based bioprinting of multilayered nanocellulose constructs for cell cultivation UsingIn SituFreezing and preprint CACL2Cross-Linking. ACS Omega,

6(1), 569–578. https://doi.org/10.1021/acsomega.0c05036

Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital Twin: values, challenges and

enablers from a modeling perspective. IEEE Access, 8, 21980–22012. https://doi.org/10.1109/access.2020.2970143.

Shahrubudin, N., Lee, T., & Ramlan, R. (2019). An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089.

Smith, J., & Mele, E. (2021). Electrospinning and additive manufacturing: Adding Three-Dimensionality to Electrospun scaffolds for tissue engineering. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.674738

Song, D., Xu, Y., Liu, S., Wen, L., & Wang, X. (2021). Progress of 3D bioprinting in organ manufacturing. Polymers (Basel), 13(18), 3178. https://doi.org/10.3390/polym13183178.

Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, Bronk LF, Ananta JS, Mandelin J, Georgescu MM, Bankson JA, Gelovani JG, Killian TC, Arap W, Pasqualini R. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 2010 Apr;5(4):291-6. doi: 10.1038/nnano.2010.23. Epub 2010 Mar 14. PMID: 20228788; PMCID: PMC4487889.

Subramanian, B., Das, P., Biswas, S., Roy, A., & Basak, P. (2023). Polymers for additive manufacturing and 4D-printing for tissue regenerative applications. In Elsevier eBooks (pp. 159–182). https://doi.org/10.1016/b978-0-323-88524-9.00001-2

Sun Z. Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions. Biomolecules. 2020 Nov 20;10(11):1577. Doi: 10.3390/biom10111577.

Sun, Zhonghua, Yin How Wong, and Chai Hong Yeong. 2023. "Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice" Micromachines 14, no. 2: 464. https://doi.org/10.3390/mi14020464

Tappa, Karthik, and Udayabhanu Jammalamadaka. 2018. "Novel Biomaterials Used in Medical 3D Printing Techniques" Journal of Functional Biomaterials 9, no. 1: 17. https://doi.org/10.3390/jfb9010017

Tian, S., Zhao, H., & Lewinski, N. A. (2021). Key parameters and applications of extrusion-based bioprinting. Bioprinting, 23, e00156. https://doi.org/10.1016/j.bprint.2021.e00156

Vanaei, S., Parizi, M. S., Salemizadehparizi, F., & Vanaei, H. R. (2021). An overview on materials and techniques in 3D bioprinting toward biomedical application. Engineered Regeneration, 2, 1–18. https://doi.org/10.1016/j.engreg.2020.12.001

Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014 Oct;39(10):704-11.

Vermeulen, N., Haddow, G., Seymour, T., Faulkner-Jones, A., & Shu, W. (2017). 3D bioprint me: a socioethical view of bioprinting human organs and tissues. Journal of Medical Ethics, 43(9), 618–624. https://doi.org/10.1136/medethics-2015-103347

Vijayavenkataraman, S., Lu, W. F., & Fuh, J. Y. H. (2016). 3D bioprinting – An Ethical, Legal and Social Aspects (ELSA) framework. Bioprinting, 1–2, 11–21. https://doi.org/10.1016/j.bprint.2016.08.001.

Wasti, S., & Adhikari, S. (2020). Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Frontiers in Chemistry (Lausanne), 8. https://doi.org/10.3389/fchem.2020.00315

Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev. 2019 Apr 24;119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593. Epub 2019 Mar 27. PMID: 30916938; PMCID: PMC6589095.

Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., & Shi, Y. (2018). A review of 3D printing technology for medical applications. Engineering, 4(5), 729–742. https://doi.org/10.1016/j.eng.2018.07.021.

Committee on Publication Ethics

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
90
View
0
Share