Journal of Precision Biosciences

Precision sciences | Online ISSN 3064-9226
29
Citations
74.5k
Views
51
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
SYSTEMATIC REVIEW   (Open Access)

Benchmarking the Omics Revolution: A Comprehensive Review of Methodological Consistency and Clinical Readiness

Abstract 1. Introduction 2. Materials and Methods 3. Results 4. Discussion 5. Limitations 6. Conclusion References

Samima Nasrin Setu1*, Rifat Bin Amin2, Raihan Mia1, Ismath tarin 

+ Author Affiliations

Journal of Precision Biosciences 7 (1) 1-8 https://doi.org/10.25163/biosciences.7110539

Submitted: 13 October 2025 Revised: 09 December 2025  Accepted: 17 December 2025  Published: 19 December 2025 


Abstract

Omics technologies encompassing genomics, transcriptomics, proteomics, and metabolomics—have revolutionized our understanding of complex biological systems by enabling comprehensive, high-throughput profiling of molecular landscapes. This systematic review and meta-analysis synthesized evidence from studies spanning 2000–2024 to evaluate the reproducibility, accuracy, and clinical relevance of omics approaches across diverse human health contexts. A rigorous literature search was conducted in PubMed, Scopus, Web of Science, and Embase, with studies screened according to PRISMA guidelines. Forest plots were employed to visualize effect sizes and confidence intervals, while funnel plots assessed potential publication bias, revealing generally reproducible molecular signatures alongside mild asymmetries indicative of small-study effects. Random-effects meta-analyses quantified heterogeneity, identifying methodological factors—such as platform type, sample handling, and cohort characteristics—as key contributors to variability. Across studies, transcriptomic data consistently highlighted immune and metabolic pathway alterations, proteomic analyses revealed changes in key enzymes and regulatory proteins, and metabolomics captured downstream functional consequences, illustrating the complementary value of multi-omics integration. Despite inherent heterogeneity and modest publication bias, the pooled analyses underscore the robustness of core molecular patterns and their potential as biomarkers for disease diagnosis, prognosis, and therapeutic targeting. This review emphasizes the need for standardized protocols, transparent reporting, and multi-cohort validation to enhance reproducibility and clinical translation. Collectively, our findings highlight that systematic aggregation of omics data not only strengthens biological inference but also provides a roadmap for leveraging multi-omics approaches in precision medicine. Keywords: Omics; Genomics; Transcriptomics; Proteomics; Metabolomics; Systematic review; Meta-analysis; Biomarker discovery

References

Amezquita, R. A., et al. (2020). Orchestrating single-cell analysis with Bioconductor. Nature Methods, 17, 137–145. https://doi.org/10.1038/s41592-019-0654-x

Ayon, N. J. (2023). High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites, 13(5), 625. https://doi.org/10.3390/metabo13050625

Baker, E. A. G., Schapiro, D., Dumitrascu, B., Vickovic, S., & Regev, A. (2023). In silico tissue generation and power analysis for spatial omics. Nature Methods, 20, 424–431. https://doi.org/10.1038/s41592-023-01766-6

Beale, D. J., Kouremenos, K. A., & Palombo, E. A. (Eds.). (2016). Beyond metabolomics: A review of multi-omics-based approaches. In Microbial metabolomics: Applications in clinical, environmental, and industrial microbiology (pp. 289–312). Springer International Publishing. https://doi.org/10.1007/978-3-319-46326-1_10

Boguszewicz, L., Bielen, A., Jarczewski, J. D., Ciszek, M., Skorupa, A., Skladowski, K., & Sokól, M. (2021). Molecular response to induction chemotherapy and its correlation with treatment outcome in head and neck cancer patients by means of NMR-based metabolomics. BMC Cancer, 21, 410. https://doi.org/10.1186/s12885-021-08137-4                

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9

Bonicelli, A., Mickleburgh, H. L., Chighine, A., Locci, E., Wescott, D. J., & Procopio, N. (2022). The “ForensOMICS” approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics. eLife, 11, e83658. https://doi.org/10.7554/eLife.83658.sa2

Cantini, L., et al. (2021). Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nature Communications, 12, 124. https://doi.org/10.1038/s41467-020-20430-7

Cramér, H. (1946). Mathematical methods of statistics (p. 282). Princeton University Press. https://doi.org/10.1515/9781400883868

Cunha, B. R. D., Fonseca, L. P., & Calado, C. R. C. (2019). Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 8(2), 45. https://doi.org/10.3390/antibiotics8020045

Dai, X., Fan, F., Ye, Y., Lu, X., Chen, F., Wu, Z., & Liao, L. (2019). An experimental study on investigating the postmortem interval in dichlorvos poisoned rats by GC/MS-based metabolomics. Legal Medicine, 36, 28–36. https://doi.org/10.1016/j.legalmed.2018.10.002

Dopazo, J. (2014). Genomics and transcriptomics in drug discovery. Drug Discovery Today, 19(2), 126–132. https://doi.org/10.1016/j.drudis.2013.06.003

Du, T., Lin, Z., Xie, Y., Ye, X., Tu, C., Jin, K., Xie, J., & Shen, Y. (2018). Metabolic profiling of femoral muscle from rats at different periods of time after death. PLOS ONE, 13, e0203920. https://doi.org/10.1371/journal.pone.0203920

Ekstrom, C. T., Gerds, T. A., & Jensen, A. K. (2019). Sequential rank agreement methods for comparison of ranked lists. Biostatistics, 20, 582–598. https://doi.org/10.1093/biostatistics/kxy017

Fang, S., Dai, X., Shi, X., Xiao, L., Ye, Y., & Liao, L. (2023). A pilot study investigating early postmortem interval of rats based on ambient temperature and postmortem interval-related metabolites in blood. Forensic Science, Medicine and Pathology, 20, 560–568. https://doi.org/10.1007/s12024-023-00643-0

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Fernández-Acero, F. J., Amil-Ruiz, F., Durán-Peña, M. J., Carrasco, R., Fajardo, C., Guarnizo, P., Fuentes-Almagro, C., & Vallejo, R. A. (2019). Valorisation of the microalgae Nannochloropsis gaditana biomass by proteomic approach in the context of circular economy. Journal of Proteomics, 193, 239–242. https://doi.org/10.1016/j.jprot.2018.10.015

Fijorek, K., Fijorek, D., Wisniowska, B., & Polak, S. (2011). BDTcomparator: A program for comparing binary classifiers. Bioinformatics, 27, 3439–3440. https://doi.org/10.1093/bioinformatics/btr574

Fitzpatrick, D., & Walsh, F. (2016). Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiology Ecology, 92(1), fiv168. https://doi.org/10.1093/femsec/fiv168

Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78, 553–569. https://doi.org/10.1080/01621459.1983.10478008

Francine, P. (2022). Systems biology: New insight into antibiotic resistance. Microorganisms, 10(12), 2362. https://doi.org/10.3390/microorganisms10122362

Gatto, L., et al. (2023). Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nature Methods, 20, 375–386. https://doi.org/10.1038/s41592-023-01785-3

Gaudêncio, S. P., Bayram, E., Lukic Bilela, L., Cueto, M., Díaz-Marrero, A. R., Haznedaroglu, B. Z., Jimenez, C., Mandalakis, M., Pereira, F., Reyes, F., & Tasdemir, D. (2023). Advanced methods for natural products discovery: Bioactivity screening, dereplication, metabolomics profiling, genomic sequencing, databases and informatic tools, and structure elucidation. Marine Drugs, 21(5), 308. https://doi.org/10.3390/md21050308

Ghini, V., Laera, L., Fantechi, B., Monte, F. D., Benelli, M., McCartney, A., Leonardo, T., Luchinat, C., & Pozzessere, D. (2020). Metabolomics to assess response to immune checkpoint inhibitors in patients with non-small-cell lung cancer. Cancers, 12(12), 3574. https://doi.org/10.3390/cancers12123574             

Goff, A. G., Cloutier, D., Welch, L. M., & Williams, S. J. (2020). Beyond penicillin: Exploring new avenues for antibiotic discovery in the age of antimicrobial resistance. Applied Sciences, 10(13), 4629. https://doi.org/10.3390/app10134629

Gómez-Cebrián, N., Vazquez Ferreiro, P., Carrera Hueso, F. J., Poveda Andrés, J. L., Puchades-Carrasco, L., & Pineda-Lucena, A. (2021). Pharmacometabolomics by NMR in Oncology: A Systematic Review. Pharmaceuticals, 14(10), 1015. https://doi.org/10.3390/ph14101015

Handelsman, J. (2009). Metagenetics: Spending our inheritance on the future. Microbial Biotechnology, 2(2), 138–139. https://doi.org/10.1111/j.1751-7915.2009.00090.x

Horgan, R. P., & Kenny, L. C. (2011). ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13(3), 189–195. https://doi.org/10.1576/toag.13.3.189.27672

Huber, W., et al. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods, 12, 115–121. https://doi.org/10.1038/nmeth.3252

Janiszewska, D., Szultka-Mlynska, M., Pomastowski, P., & Buszewski, B. (2022). “Omic” approaches to bacteria and antibiotic resistance identification. International Journal of Molecular Sciences, 23(16), 9601. https://doi.org/10.3390/ijms23179601

Jiang, L., Lee, S. C., & Ng, T. C. (2018). Pharmacometabonomics analysis reveals serum formate and acetate potentially associated with varying response to gemcitabine-carboplatin chemotherapy in metastatic breast cancer patients. Journal of Proteome Research, 17(3), 1248-1257. https://doi.org/10.1021/acs.jproteome.7b00859         

Jiang, R., Sun, T., Song, D., & Li, J. J. (2022). Statistics or biology: The zero-inflation controversy about scRNA-seq data. Genome Biology, 23, 31. https://doi.org/10.1186/s13059-022-02601-5

Jobard, E., Trédan, O., Bachelot, T., Vigneron, A. M., Aït-Oukhatar, C. M., Arnedos, M., Rios, M., Bonneterre, J., Diéras, V., Jimenez, M., & others. (2017). Longitudinal serum metabolomics evaluation of trastuzumab and everolimus combination as pre-operative treatment for HER-2 positive breast cancer patients. Oncotarget, 8(48), 83570-83584. https://doi.org/10.18632/oncotarget.18784      

Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17(7), 451–459. https://doi.org/10.1038/nrm.2016.25

Karahalil, B. (2016). Overview of systems biology and omics technologies. Current Medicinal Chemistry, 23(37), 4221–4230. https://doi.org/10.2174/0929867323666160926150617

Knight, C. H., et al. (2023). IBRAP: Integrated benchmarking single-cell RNA-sequencing analytical pipeline. Briefings in Bioinformatics, 24, bbad061. https://doi.org/10.1093/bib/bbad061

Lähnemann, D., et al. (2020). Eleven grand challenges in single-cell data science. Genome Biology, 21, 31. https://doi.org/10.1186/s13059-020-1926-6

Leng, D., et al. (2022). A benchmark study of deep learning-based multi-omics data fusion methods for cancer. Genome Biology, 23, 171. https://doi.org/10.1186/s13059-022-02739-2

Liu, X., Ashforth, E., Ren, B., Song, F., Dai, H., Liu, M., Wang, J., Xie, Q., & Zhang, L. (2010). Bioprospecting microbial natural product libraries from the marine environment for drug discovery. Journal of Antibiotics, 63(8), 415–422. https://doi.org/10.1038/ja.2010.56

Lu, X., Li, J., Wei, X., Li, N., Dang, L., An, G., Du, Q., Jin, Q., Cao, J., Wang, Y., et al. (2023). A novel method for determining postmortem interval based on the metabolomics of multiple organs combined with ensemble learning techniques. International Journal of Legal Medicine, 137, 237–249. https://doi.org/10.1007/s00414-022-02844-8

Ma, S., Jaipalli, S., Larkins-Ford, J., Lohmiller, J., Aldridge, B. B., Sherman, D. R., & Chandrasekaran, S. (2019). Transcriptomic signatures predict regulators of drug synergy and clinical regimen efficacy against tuberculosis. mBio, 10(1), e02009-18. https://doi.org/10.1128/mBio.02627-19

Malcangi, G., Patano, A., Guglielmo, M., Sardano, R., Palmieri, G., Di Pede, C., de Ruvo, E., Inchingolo, A. D., Mancini, A., Inchingolo, F., Bordea, I. R., Dipalma, G., & Inchingolo, A. M. (2023). Precision medicine in oral health and diseases: A systematic review. Journal of Personalized Medicine, 13(5), 725. https://doi.org/10.3390/jpm13050725

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta, 405, 442–451. https://doi.org/10.1016/0005-2795(75)90109-9

Nogueira, T., & Botelho, A. (2021). Metagenomics and other omics approaches to bacterial communities and antimicrobial resistance assessment in aquacultures. Antibiotics, 10(7), 787. https://doi.org/10.3390/antibiotics10070787

O’Rourke, A., Beyhan, S., Choi, Y., Morales, P., Chan, A. P., Espinoza, J. L., Dupont, C. L., Meyer, K. J., Spoering, A., Lewis, K., & Keren, S. (2020). Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrobial Agents and Chemotherapy, 64(2), e01207-19. https://doi.org/10.1128/AAC.01207-19

Pereira, F. (2019). Metagenomics: A gateway to drug discovery. In S. N. Meena & M. M. Naik (Eds.), Advances in biological science research (pp. 453–468). Academic Press. https://doi.org/10.1016/B978-0-12-817497-5.00028-8

Pérez-Martínez, C., Pérez-Cárceles, M. D., Legaz, I., Prieto-Bonete, G., & Luna, A. (2017). Quantification of nitrogenous bases, DNA and collagen type I for the estimation of the postmortem interval in bone remains. Forensic Science International, 281, 106–112. https://doi.org/10.1016/j.forsciint.2017.10.039

Pierre-Jean, M., Deleuze, J.-F., Le Floch, E., & Mauger, F. (2020). Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration. Briefings in Bioinformatics, 21, 2011–2030. https://doi.org/10.1093/bib/bbz138

Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(3), 76. https://doi.org/10.3390/metabo9040076

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850. https://doi.org/10.1080/01621459.1971.10482356

Rappoport, N., & Shamir, R. (2018). Multi-omic and multi-view clustering algorithms: Review and cancer benchmark. Nucleic Acids Research, 46, 10546–10562. https://doi.org/10.1093/nar/gky889

Sang-aram, C., Browaeys, R., Seurinck, R., & Saeys, Y. (2023). Spotless: A reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. eLife, 12, RP88431. https://doi.org/10.7554/eLife.88431.3

Secco, L., Palumbi, S., Padalino, P., Grosso, E., Perilli, M., Casonato, M., Cecchetto, G., & Viel, G. (2025). “Omics” and postmortem interval estimation: A systematic review. International Journal of Molecular Sciences, 26(3), 1034. https://doi.org/10.3390/ijms26031034

Silverman, J. D., Roche, K., Mukherjee, S., & David, L. A. (2020). Not all zeros in sequence count data are the same. Computational and Structural Biotechnology Journal, 18, 2789–2798. https://doi.org/10.1016/j.csbj.2020.09.014

Swinney, D. C. (2014). Phenotypic vs. target-based drug discovery for first-in-class medicines. Clinical Pharmacology & Therapeutics, 96(3), 299–302. https://doi.org/10.1038/clpt.2012.236

Tantasatityanon, P., & Wichadakul, D. (2023). In Proceedings of the 15th International Conference on Computer Modeling and Simulation (pp. 84–91). ACM. https://doi.org/10.1145/3608251.3608286

Tiew, P. Y., Meldrum, O. W., & Chotirmall, S. H. (2023). Applying next-generation sequencing and multi-omics in chronic obstructive pulmonary disease. International Journal of Molecular Sciences, 24(3), 2955. https://doi.org/10.3390/ijms24032955

Valecha, M., & Posada, D. (2022). Somatic variant calling from single-cell DNA sequencing data. Computational and Structural Biotechnology Journal, 20, 2978–2985. https://doi.org/10.1016/j.csbj.2022.06.013

Vashisht, A., Ahluwalia, P. K., & Gahlay, G. K. (2021). A comparative analysis of the altered levels of human seminal plasma constituents as contributing factors in different types of male infertility. Current Issues in Molecular Biology, 43(3), 1307-1324. https://doi.org/10.3390/cimb43030093             

Virshup, I., Bredikhin, D., Heumos, L., Palla, G., Sturm, G., Gayoso, A., & Theis, F. J. (2023). The scverse project provides a computational ecosystem for single-cell omics data analysis. Nature biotechnology, 41(5), 604-606. https://doi.org/10.1038/s41587-023-01733-8

Wang, C., Yang, C., Chen, X., Yao, B., Yang, C., Zhu, C., Li, L., Wang, J., Li, X., Shao, Y., & others. (2011). Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clinical Chemistry, 57(12), 1722-1731. https://doi.org/10.1373/clinchem.2011.169714

Wang, Z., Soni, V., Marriner, G., Kaneko, T., Boshoff, H. I. M., Barry, C. E., III, & Rhee, K. Y. (2019). Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of Mycobacterium tuberculosis to bedaquiline. Proceedings of the National Academy of Sciences, 116(39), 19646–19651. https://doi.org/10.1073/pnas.1907946116

Wu, Z., Lu, X., Chen, F., Dai, X., Ye, Y., Yan, Y., & Liao, L. (2018). Estimation of early postmortem interval in rats by GC-MS-based metabolomics. Legal Medicine, 31, 42–48. https://doi.org/10.1016/j.legalmed.2017.12.014

Zampieri, M., Szappanos, B., Buchieri, M. V., Trauner, A., Piazza, I., Picotti, P., Gagneux, S., Borrell, S., Gicquel, B., Lelievre, J., et al. (2018). High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, 10(462), eaal3973. https://doi.org/10.1126/scitranslmed.aal3973


Article metrics
View details
0
Downloads
0
Citations
220
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
220
View
0
Share