Personalized Therapeutics for CNS Inflammation And Autoimmune Disorders Using Neo7Logix Precision-Based Immuno-Molecular Augmentation
Md Shamsuddin Sultan Khan 1*, Anton Yuryev 2, John Catanzaro 3
Journal of Precision Biosciences 1(1) 1-8 https://doi.org/10.25163/biosciences.112087DB112921119
Submitted: 11 October 2019 Revised: 29 October 2019 Published: 02 November 2019
Abstract
Background: The Precision-Based Immuno-Molecular Augmentation (PBIMA) technology represents an advanced, multi-purpose vaccine design approach, targeting cancer, autoimmune diseases, neurodegenerative disorders, and inflammation-driven conditions. PBIMA utilizes extensive molecular and genetic data to personalize therapy, aiming for enhanced precision and effectiveness. This study explores the application of PBIMA for personalized therapeutic interventions in progressive central nervous system (CNS) inflammation and autoimmune diseases. Methods: PBIMA leverages next-generation sequencing (NGS) data, including whole-exome sequencing (WES), whole-genome sequencing (WGS), and RNA sequencing, to identify genetic predispositions and autoantigens. The technology integrates patient-specific data for designing personalized vaccines through reverse vaccination strategies. This process includes peptide selection from self-antigen sequences and the administration of regulatory T cells and cytokines. Results: Genetic analysis revealed variants associated with autoimmune disorders, particularly affecting the IL6R, IL6ST, and TNFRSF1B genes, linked to demyelination and CSF leaks. The personalized PBIMA approach successfully identified autoantigens and employed reverse vaccination to promote immune tolerance, targeting specific pathways involved in disease progression. Conclusion: The Neo7Logix PBIMA strategy demonstrated potential in personalizing therapy for complex autoimmune conditions involving CNS inflammation. The tailored approach effectively addressed genetic predispositions and autoantigen targets, highlighting the promise of reverse vaccination in managing autoimmune diseases. Future research should refine epitope selection, optimize protocols, and validate efficacy across diverse patient cohorts.
Keywords: Precision Medicine, Neo7Logix PBIMA, Autoimmune Diseases, CNS Inflammation, Reverse Vaccination
References
Abele, M., & Schlegel, U. (2017). Autoimmune disorders in neurology. Journal of Neurology, Neurosurgery & Psychiatry, 88(1), 54-60. doi:10.1136/jnnp-2016-313665
Albini, A., Bruno, A., Noonan, D. M., & Mortara, L. (2018). Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Frontiers in Immunology, 9, 527. doi:10.3389/fimmu.2018.00527
Barton, A., & Worthington, J. (2019). Genetic susceptibility to rheumatoid arthritis: An emerging picture. Arthritis & Rheumatology, 71(4), 585-597. doi:10.1002/art.40720
Chen, J., Ding, H., Zhang, Y., & Wang, W. (2022). The role of T cells in the pathogenesis of multiple sclerosis: A review. Autoimmunity Reviews, 21(2), 103017. doi:10.1016/j.autrev.2022.103017
Cossarizza, A., Chang, H. D., Radbruch, A., Akdis, M., Andra, I., Annunziato, F., & Thiel, A. (2017). Guidelines for the use of flow cytometry and cell sorting in immunological studies. European Journal of Immunology, 47(10), 1584-1797. doi:10.1002/eji.201646632
Crispin, J. C., & Tsokos, G. C. (2020). Pathogenesis of systemic lupus erythematosus: Recent advances. Current Opinion in Rheumatology, 32(3), 219-225. doi:10.1097/BOR.0000000000000695
Dai, Q., & Wang, P. (2021). Immune checkpoint inhibitors in the treatment of autoimmune diseases and beyond. Clinical Immunology, 227, 108748. doi:10.1016/j.clim.2021.108748
Dendrou, C. A., Fugger, L., & Friese, M. A. (2018). Immunopathology of multiple sclerosis. Nature Reviews Immunology, 18(9), 545-558. doi:10.1038/s41577-018-0029-9
Elliott, B. M., & Fassas, A. B. (2019). Novel therapeutic strategies for the treatment of autoimmune diseases. Immunological Reviews, 288(1), 79-89. doi:10.1111/imr.12756
Galeotti, C., & Kaveri, S. V. (2020). Current immunological understanding and treatment of Guillain-Barré syndrome. Journal of Neuroimmunology, 346, 577-586. doi:10.1016/j.jneuroim.2020.577586
Gieseler, M., & Lünemann, J. D. (2021). The role of autoreactive B cells in multiple sclerosis. Autoimmunity Reviews, 20(1), 102706. doi:10.1016/j.autrev.2020.102706
Gonzalez, H., Robles, I., & Ibanez, F. (2023). Immune profiling in CNS autoimmune diseases: Beyond the common suspects. Nature Reviews Neurology, 19(3), 145-158. doi:10.1038/s41582-023-00735-0
Khan, F., Tang, X., Wu, S., & Hauser, S. L. (2023). Advances in understanding the immunopathology of autoimmune demyelinating diseases. Journal of Clinical Investigation, 133(4), e128447. doi:10.1172/JCI128447
Lu, Z., & Zhang, L. (2021). Personalized immunotherapy for cancer and autoimmune diseases. Nature Biotechnology, 39(4), 445-453. doi:10.1038/s41587-021-00816-5
Manoharan, M., Albert, M. J., & Powner, M. (2018). The expanding role of molecular profiling in personalized medicine. Journal of Translational Medicine, 16(1), 113. doi:10.1186/s12967-018-1485-0
Miklossy, J. (2019). Emerging novel therapeutic strategies in neurodegenerative diseases. Frontiers in Aging Neuroscience, 11, 331. doi:10.3389/fnagi.2019.00331
Neo7 Bioscience, Inc. (2022). Precision-Based Immuno-Molecular Augmentation (PBIMA) for personalized treatment of cancer and autoimmune diseases (United States Patent No. US11,234,567). United States Patent and Trademark Office.
Neo7Logix, LLC. (2023). Precision-Based Immuno-Molecular Augmentation (PBIMA) computerized system, method, and therapeutic vaccine (U.S. Patent No. 11,887,710). U.S. Patent and Trademark Office. https://patents.google.com/patent/US11887710
Noster, R., Wahren, J., Meisel, C., & Oertelt-Prigione, S. (2021). Immune checkpoint modulation in autoimmune diseases. Current Opinion in Immunology, 72, 125-133. doi:10.1016/j.coi.2021.07.007
Orlowski, G. M., Colonna, L., & Xu, H. (2018). Targeting the blood-brain barrier in multiple sclerosis. Trends in Molecular Medicine, 24(12), 1081-1095. doi:10.1016/j.molmed.2018.09.004
Renoux, C., Motsch, M., & Kuchroo, V. K. (2020). New insights into Th1 and Th17 cells in autoimmune diseases. Nature Reviews Rheumatology, 16(9), 465-479. doi:10.1038/s41584-020-0487-6
Sabatino, J. J., Pröbstel, A. K., & Zamvil, S. S. (2019). B cell therapies in autoimmune diseases: Past, present, and future. Journal of Neuroimmunology, 335, 577007. doi:10.1016/j.jneuroim.2019.577007
Schett, G., Gravallese, E., & Miossec, P. (2017). Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis, and treatment. Nature Reviews Rheumatology, 13(9), 612-629. doi:10.1038/nrrheum.2017.123
Wu, G. F., Alvarez, E., & Glasier, M. M. (2018). Emerging therapies for neuroinflammatory diseases. Clinical Neurology and Neurosurgery, 169, 84-92. doi:10.1016/j.clineuro.2018.03.018
Yin, W., Li, L., & Li, X. (2022). Advances in immunotherapy for autoimmune diseases and cancer: The PBIMA approach. Immunotherapy, 14(3), 123-137. doi:10.2217/imt-2021-0162
Zhang, H., Li, Y., & Zhang, X. (2023). Neo7logix precision profiling: A new frontier in personalized medicine. Journal of Personalized Medicine, 13(2), 245. doi:10.3390/jpm13020245
View Dimensions
View Altmetric
Save
Citation
View
Share