Precision sciences | Online ISSN 3064-9226
REVIEWS   (Open Access)

Unintended Genetic Consequences of mRNA Vaccines: Evaluating Risks of Transcriptional Disruption, HLA Alteration, and Genomic Integration

Md Jabir Rashid1*, Md Sakil Amin1, Tufael2, Azizur Rahman3

+ Author Affiliations

Journal of Precision Biosciences 7(1) 1-8 https://doi.org/10.25163/biosciences.7110287

Submitted: 06 January 2025  Revised: 08 March 2025  Published: 12 March 2025 

Abstract

The rapid advancement of mRNA technology, particularly in COVID-19 vaccines, has sparked widespread debate regarding its safety and long-term genetic implications. This study critically examines the potential risks associated with mRNA vaccines, specifically their ability to induce rogue transcriptional events that may lead to unintended genetic modifications. Contrary to initial claims that mRNA degrades harmlessly, emerging evidence suggests that synthetic sequences may embed within the human exome, disrupting essential genetic processes. The primary concern lies in the potential scrambling of the Human Leukocyte Antigen (HLA) gene complex, which could trigger autoimmune disorders and long-term genetic instability. Furthermore, the spike proteins produced by mRNA vaccines have been implicated in oxidative stress, DNA damage, and impaired cellular repair mechanisms. This study underscores the urgent need for high-resolution molecular surveillance to detect and mitigate these risks before they become permanent fixtures in the human genome. Collaborative efforts from institutions such as Neo7Bioscience, the McCullough Foundation, and the University of North Texas are pioneering RNA detection methods to assess and counteract these genetic alterations. As evidence of unintended genetic integration accumulates, a reevaluation of mRNA technology is imperative to prevent irreversible consequences for human health. The findings presented highlight the necessity for transparency, rigorous research, and ethical considerations in the deployment of genetic-based therapies.

Keywords: mRNA vaccines, rogue transcription, genetic integration, spike proteins, autoimmune disorders.

References

Acevedo-Whitehouse, K., & Bruno, R. (2023). Potential health risks of mRNA-based vaccine therapy: A hypothesis. Medical Hypotheses, 171, 111015. https://doi.org/10.1016/j.mehy.2023.111015

Altman, N. L., Berning, A. A., Mann, S. C., Quaife, R. A., Gill, E. A., Auerbach, S. R., Campbell, T. B., & Bristow, M. R. (2023). Vaccination-Associated myocarditis and myocardial injury. Circulation Research, 132(10), 1338–1357. https://doi.org/10.1161/circresaha.122.321881

Balagurunathan, Y., & Sethuraman, R. R. (2024). An analysis of Ethics-Based Foundation and Regulatory Issues for Genomic Data Privacy. Journal of the Institution of Engineers (India) Series B, 105(4), 1097–1107. https://doi.org/10.1007/s40031-024-01058-3

Banoun, H. (2023). MRNA: vaccine or gene therapy? The safety regulatory issues. International Journal of Molecular Sciences, 24(13), 10514. https://doi.org/10.3390/ijms241310514

Chaudhary, N., Weissman, D., & Whitehead, K. A. (2021). mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 20(11), 817–838. https://doi.org/10.1038/s41573-021-00283-5

Córdoba, K. M., Jericó, D., Sampedro, A., Jiang, L., Iraburu, M. J., Martini, P. G., Berraondo, P., Avila, M. A., & Fontanellas, A. (2022). Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. International Review of Cell and Molecular Biology, 55–96. https://doi.org/10.1016/bs.ircmb.2022.03.005

Cusumano, M. A. (2024, May 1). How pharmaceutical companies utilize platform Strategy: A study of the COVID-19 mRNA vaccine development. https://dspace.mit.edu/handle/1721.1/155647

De Souza, A. S., De Freitas Amorim, V. M., Guardia, G. D. A., Santos, F. F. D., Ulrich, H., Galante, P. a. F., De Souza, R. F., & Guzzo, C. R. (2022). Severe Acute Respiratory Syndrome Coronavirus 2 Variants of concern: A perspective for emerging More Transmissible and Vaccine-Resistant Strains. Viruses, 14(4), 827. https://doi.org/10.3390/v14040827

Dórea, J. G. (2008). Persistent, bioaccumulative and toxic substances in fish: Human health considerations. The Science of the Total Environment, 400(1–3), 93–114. https://doi.org/10.1016/j.scitotenv.2008.06.017

Dwivedi, S., Purohit, P., Misra, R., Pareek, P., Goel, A., Khattri, S., Pant, K. K., Misra, S., & Sharma, P. (2017). Diseases and Molecular Diagnostics: a step closer to precision medicine. Indian Journal of Clinical Biochemistry, 32(4), 374–398. https://doi.org/10.1007/s12291-017-0688-8

Fine, P. E. M., & Zell, E. R. (1994). Outbreaks in Highly vaccinated populations: Implications for studies of vaccine performance. American Journal of Epidemiology, 139(1), 77–90. https://doi.org/10.1093/oxfordjournals.aje.a116937

Ghosh, A., Larrondo-Petrie, M. M., & Pavlovic, M. (2023). Revolutionizing Vaccine Development for COVID-19: A review of AI-Based Approaches. Information, 14(12), 665. https://doi.org/10.3390/info14120665

Ginsburg, G. S., & Willard, H. F. (2009). Genomic and personalized medicine: foundations and applications. Translational Research, 154(6), 277–287. https://doi.org/10.1016/j.trsl.2009.09.005

Gote, V., Bolla, P. K., Kommineni, N., Butreddy, A., Nukala, P. K., Palakurthi, S. S., & Khan, W. (2023). A comprehensive review of mRNA vaccines. International Journal of Molecular Sciences, 24(3), 2700. https://doi.org/10.3390/ijms24032700

Hilleman, M. R. (2004). Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proceedings of the National Academy of Sciences, 101(suppl_2), 14560–14566. https://doi.org/10.1073/pnas.0404758101

Ji, P., Li, Y., Wang, Z., Jia, S., Jiang, X., Chen, H., & Wang, Q. (2024). Advances in precision gene editing for liver fibrosis: From technology to therapeutic applications. Biomedicine & Pharmacotherapy, 177, 117003. https://doi.org/10.1016/j.biopha.2024.117003

Mandel, L. (2024). Autoimmune disease. In Springer eBooks (pp. 115–142). https://doi.org/10.1007/978-3-031-50012-1_7

Moore, J. P., & Klasse, P. J. (2020). COVID-19 vaccines: “Warp speed” needs mind melds, not warped minds. Journal of Virology, 94(17). https://doi.org/10.1128/jvi.01083-20

Mueller, S. (2023). Challenges and opportunities of mRNA vaccines against SARS-COV-2. In Springer eBooks. https://doi.org/10.1007/978-3-031-18903-6

Muñoz-Carrillo, J. L., Castro-García, F. P., Chávez-Rubalcaba, F., Chávez-Rubalcaba, I., Martínez-Rodríguez, J. L., & Hernández-Ruiz, M. E. (2018). Immune system disorders: hypersensitivity and autoimmunity. In InTech eBooks. https://doi.org/10.5772/intechopen.75794

Pilati, F. (2024, May 20). One pandemic, many controversies. Mapping the COVID-19 “infodemic” via digital methods. https://tesidottorato.depositolegale.it/handle/20.500.14242/62066

Qin, Z., Bouteau, A., Herbst, C., & Igyártó, B. Z. (2022). Pre-exposure to mRNA-LNP inhibits adaptive immune responses and alters innate immune fitness in an inheritable fashion. PLoS Pathogens, 18(9), e1010830. https://doi.org/10.1371/journal.ppat.1010830

Rana, M. S., Das, S. S., Hossian, M., & Bashir, M. S. (2023). Impact and challenges of digital marketing in health care during the COVID-19 pandemic. Journal of Primeasia, 4(1), 1-4. https://doi.org/10.25163/primeasia.419756

Rehman, S. (2024, April 30). Ethical Implications of Genetic Engineering: Balancing innovation and responsibility. https://sprcopen.org/FBG/article/view/69

Roos, D., & De Boer, M. (2021). Mutations in cis that affect mRNA synthesis, processing and translation. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867(9), 166166. https://doi.org/10.1016/j.bbadis.2021.166166

Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., & Shehzad, F. (2014). Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research, 22(6), 4122–4143. https://doi.org/10.1007/s11356-014-3994-1

Samir, S. (2023). Human DNA Mutations and their Impact on Genetic Disorders. Recent Patents on Biotechnology, 18(4), 288–315. https://doi.org/10.2174/0118722083255081231020055309

Seneff, S., & Nigh, G. (2021). Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. International Journal of Vaccine Theory Practice and Research, 2(1), 38–79. https://doi.org/10.56098/ijvtpr.v2i1.23

Shmulevich, R., & Krizhanovsky, V. (2020). Cell senescence, DNA damage, and metabolism. Antioxidants and Redox Signaling, 34(4), 324–334. https://doi.org/10.1089/ars.2020.8043

Skerritt, J. H. (2025). Considerations for mRNA product development, regulation and deployment across the lifecycle. Vaccines, 13(5), 473. https://doi.org/10.3390/vaccines13050473

Stati, G., Amerio, P., Nubile, M., Sancilio, S., Rossi, F., & Di Pietro, R. (2023). Concern about the Effectiveness of mRNA Vaccination Technology and Its Long-Term Safety: Potential Interference on miRNA Machinery. International Journal of Molecular Sciences, 24(2), 1404. https://doi.org/10.3390/ijms24021404

Strianese, O., Rizzo, F., Ciccarelli, M., Galasso, G., D’Agostino, Y., Salvati, A., Del Giudice, C., Tesorio, P., & Rusciano, M. R. (2020). Precision and Personalized Medicine: How Genomic approach Improves the Management of cardiovascular and Neurodegenerative Disease. Genes, 11(7), 747. https://doi.org/10.3390/genes11070747

Thi, H. V., Thi, L. N., Tang, T. L., & Chu, D. (2024). Biosafety and regulatory issues of RNA therapeutics. Progress in Molecular Biology and Translational Science, 311–329. https://doi.org/10.1016/bs.pmbts.2023.12.008

Tufael, M.?S.?B., Rana, M.?S., Das, S.?S., & Hossian, M. (2023). Nutritional evaluation of cassava meal components. Journal of Primeasia, 4(1), 1–4. https://doi.org/10.25163/angiotherapy.839572\

Wallis, J., Shenton, D. P., & Carlisle, R. C. (2019). Novel approaches for the design, delivery and administration of vaccine technologies. Clinical & Experimental Immunology, 196(2), 189–204. https://doi.org/10.1111/cei.13287

Weerarathna, I. N., Kumar, P., Luharia, A., & Mishra, G. (2024). Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered, 15(1). https://doi.org/10.1080/21655979.2024.2401269

Xu, S., Yang, K., Li, R., & Zhang, L. (2020). MRNA Vaccine Era—Mechanisms, drug platform and Clinical Prospection. International Journal of Molecular Sciences, 21(18), 6582. https://doi.org/10.3390/ijms21186582

Zinkernagel, R. M. (2003). On natural and artificial vaccinations. Annual Review of Immunology, 21(1), 515–546. https://doi.org/10.1146/annurev.immunol.21.120601.141045

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
11
View
0
Share