Precision sciences | Online ISSN 3064-9226
REVIEWS   (Open Access)

Unmasking the Dual Threat of mRNA Vaccines: Spike Protein Toxicity, Nanorobotic Vectoring, and the Promise of Signal-Based Medicine

Tufael1*, Md Jabir Rashid2, Md Sakil Amin2, Azizur Rahman3

+ Author Affiliations

Journal of Precision Biosciences 7(1) 1-8 https://doi.org/10.25163/biosciences.7110288

Submitted: 25 February 2025  Revised: 20 April 2025  Published: 22 April 2025 

Abstract

The COVID-19 pandemic triggered an unprecedented global response with the rapid deployment of mRNA vaccines. However, this expedited rollout has led to growing concerns regarding the safety of the viral spike protein and the nanorobotic vectoring technology utilized in these vaccines. Emerging evidence has raised alarms about potential long-term health complications, including cardiovascular issues such as myocarditis and thrombosis, immune system disruptions leading to autoimmune disorders, and neurological damage. The spike protein, central to both COVID-19 infection and vaccination, has been implicated in a range of adverse health effects by inducing endothelial disruption, immune confusion, and oncogenic pathway activation. Additionally, the use of nanobots in mRNA vaccines introduces another layer of complexity, with potential risks such as prolonged inflammation, persistent spike protein production, and disruption of normal cellular signaling. This paper examines the combined impact of these two technologies on human health and emphasizes the urgent need for novel therapeutic interventions. Signal-Based Medicine, a burgeoning field focused on restoring disrupted molecular pathways, is proposed as a promising solution. The study suggests that personalized, patient-matched peptide therapies can counteract the harmful effects of spike protein activity and nanobot-induced cellular disturbances. By employing advanced molecular precision and tailored treatments, Signal-Based Medicine offers a potential pathway for mitigating the long-term health risks associated with mRNA vaccine exposure and ensuring safer, more targeted medical interventions in the future.

Keywords: mRNA vaccines, spike protein, nanorobotic vectoring, Signal-Based Medicine, personalized peptide therapy

References

Ahn, S. Y., Liu, J., Vellampatti, S., Wu, Y., & Um, S. H. (2020). DNA transformations for diagnosis and therapy. Advanced Functional Materials, 31(12). https://doi.org/10.1002/adfm.202008279

Almehdi, A. M., Khoder, G., Alchakee, A. S., Alsayyid, A. T., Sarg, N. H., & Soliman, S. S. M. (2021). SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection, 49(5), 855–876. https://doi.org/10.1007/s15010-021-01677-8

Attiq-Ur-Rehman, N., Bukhari, S. H., & Bukhari, S. M. H. (2020). The Post-Corona world and international political landscape: emerging challenges. Journal of Business and Social Review in Emerging Economies, 6(2), 453–461. https://doi.org/10.26710/jbsee.v6i2.1154

Avery, G. (2004). Bioterrorism, fear, and public health reform: matching a policy solution to the wrong window. Public Administration Review, 64(3), 275–288. https://doi.org/10.1111/j.1540-6210.2004.00372.x

Bellavite, P., Ferraresi, A., & Isidoro, C. (2023). Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines, 11(2), 451. https://doi.org/10.3390/biomedicines11020451

Boas, H., & Davidovitch, N. (2022). Into the “New normal”: the ethical and analytical challenge facing public Health Post-COVID-19. International Journal of Environmental Research and Public Health, 19(14), 8385. https://doi.org/10.3390/ijerph19148385

Bakar, M. A., Deb, N., & Rahman, M. A. (2018). Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions. Journal of Primeasia, 1(1), 1-7. https://doi.org/10.25163/primeasia.1110163

Casiday, R. (2005, January 1). Risk and trust in vaccine decision making. https://durham-repository.worktribe.com/output/1624641

Catanzaro, J. A., & Khan, M. S. S. (2022). Health complications of mRNA vaccines: spike protein toxicity, nanorobotic risks, and the promise of Signal-Based medicine. publishing.emanresearch.org. https://doi.org/10.25163/biosciences.414604

Dotan, A., Muller, S., Kanduc, D., David, P., Halpert, G., & Shoenfeld, Y. (2021). The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmunity Reviews, 20(4), 102792. https://doi.org/10.1016/j.autrev.2021.102792

Dotan, A., Muller, S., Kanduc, D., David, P., Halpert, G., & Shoenfeld, Y. (2021b). The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmunity Reviews, 20(4), 102792. https://doi.org/10.1016/j.autrev.2021.102792

El-Tanani, M., Satyam, S. M., Rabbani, S. A., El-Tanani, Y., Aljabali, A. a. A., Faouri, I. A., & Rehman, A. (2025). Revolutionizing Drug delivery: The impact of advanced materials science and technology on precision medicine. Pharmaceutics, 17(3), 375. https://doi.org/10.3390/pharmaceutics17030375

Fatema, S., Hasan, M., & Chandra, D. (2025). Nanotechnology in Agriculture and Water Quality Management. Applied Agriculture Sciences, 3(1), 1-12. https://doi.org/10.25163/agriculture.3110170

Geyer, C. E., Chen, H., Bye, A. P., Manz, X. D., Guerra, D., Caniels, T. G., Bijl, T. P., Griffith, G. R., Hoepel, W., De Taeye, S. W., Veth, J., Vlaar, A. P., Vidarsson, G., Bogaard, H. J., Aman, J., Gibbins, J. M., Van Gils, M. J., De Winther, M. P., & Dunnen, J. D. (2023). Identification of new drugs to counteract anti-spike IgG-induced hyperinflammation in severe COVID-19. Life Science Alliance, 6(11), e202302106. https://doi.org/10.26508/lsa.202302106\

Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0

Horton, W. B., & Barrett, E. J. (2020). Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocrine Reviews, 42(1), 29–55. https://doi.org/10.1210/endrev/bnaa025

Jha, N. K., Ojha, S., Jha, S. K., Dureja, H., Singh, S. K., Shukla, S. D., Chellappan, D. K., Gupta, G., Bhardwaj, S., Kumar, N., Jeyaraman, M., Jain, R., Muthu, S., Kar, R., Kumar, D., Goswami, V. K., Ruokolainen, J., Kesari, K. K., Singh, S. K., & Dua, K. (2021). Evidence of coronavirus (COV) pathogenesis and emerging pathogen SARS-COV-2 in the nervous system: A review on Neurological impairments and manifestations. Journal of Molecular Neuroscience, 71(11), 2192–2209. https://doi.org/10.1007/s12031-020-01767-6

Jia, J., Wang, Z., Yue, T., Su, G., Teng, C., & Yan, B. (2020). Crossing biological barriers by engineered nanoparticles. Chemical Research in Toxicology, 33(5), 1055–1060. https://doi.org/10.1021/acs.chemrestox.9b00483

Khalid, S., Asif, H., & Kabir, M. (2021). Immunity and Autoimmune system-a review. Pakistan Journal of Health Sciences, 03–07. https://doi.org/10.54393/pjhs.v2i02.24

Kim, R. (2007). Cancer immunoediting: From immune surveillance to immune escape. In Elsevier eBooks (pp. 9–27). https://doi.org/10.1016/b978-012372551-6/50066-3

La Manna, S., Di Natale, C., Florio, D., & Marasco, D. (2018). Peptides as therapeutic agents for Inflammatory-Related diseases. International Journal of Molecular Sciences, 19(9), 2714. https://doi.org/10.3390/ijms19092714

Li, R., Zhao, Y., Fan, H., Chen, M., Hu, W., Zhang, Q., Jin, M., Liu, G. L., & Huang, L. (2022). Versatile nanorobot hand biosensor for specific capture and ultrasensitive quantification of viral nanoparticles. Materials Today Bio, 16, 100444. https://doi.org/10.1016/j.mtbio.2022.100444

Litvinenko, I. V., & Lobzin, V. Y. (2022). On a new paradigm of the development of neurodegenerative diseases by the example of Alzheimer’s disease and Parkinson’s disease. Advances in Gerontology, 12(4), 386–395. https://doi.org/10.1134/s2079057022040117

Lutsey, P. L., & Zakai, N. A. (2022). Epidemiology and prevention of venous thromboembolism. Nature Reviews Cardiology, 20(4), 248–262. https://doi.org/10.1038/s41569-022-00787-6

Machtinger, A. N., Machkovech, H. M., O’Connor, S. L., Johnson, M. C., Shafer, M. M., Friedrich, T. C., & O’Connor, D. H. (2025). Community-Scale molecular surveillance for human viruses. Annual Review of Virology. https://doi.org/10.1146/annurev-virology-092623-102821

Marx, J. L. (1988). Cell growth control takes balance. Science, 239(4843), 975–976. https://doi.org/10.1126/science.3422766

Poredos, P., & Jezovnik, M. K. (2017). Endothelial dysfunction and venous thrombosis. Angiology, 69(7), 564–567. https://doi.org/10.1177/0003319717732238

Prasad, A., Stone, G. W., Holmes, D. R., & Gersh, B. (2009). Reperfusion injury, microvascular dysfunction, and cardioprotection. Circulation, 120(21), 2105–2112. https://doi.org/10.1161/circulationaha.108.814640

Rabinovich, G. A., & Conejo-García, J. R. (2016). Shaping the immune landscape in Cancer by Galectin-Driven Regulatory Pathways. Journal of Molecular Biology, 428(16), 3266–3281. https://doi.org/10.1016/j.jmb.2016.03.021

Rana, Md Sohel, Shib Shankar Das, Moazzam Hossian, and Md Samiul Bashir. "Impact and challenges of digital marketing in health care during the COVID-19 pandemic." Journal of Primeasia 4, no. 1 (2023): 1-4. https://doi.org/10.25163/primeasia.419756

Rajendran, S., Sundararajan, P., Awasthi, A., & Rajendran, S. (2024). Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects with a Focus on Cell Therapy, Invasive Surgery, and Drug Delivery. Precision Nanomedicine, 7(1). https://doi.org/10.33218/001c.92224

Salam, M. T., Bari, K. F., Tufael, & Sunny, A. R. (2024, March 11). Relationship of Troponin?I in septic patients without cardiac disease. Journal of Primeasia, 5(1), 1–8. https://doi.org/10.25163/primeasia.519733 publishing.emanresearch.org

Seneff, S., & Nigh, G. (2021b). Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. International Journal of Vaccine Theory Practice and Research, 2(1), 38–79. https://doi.org/10.56098/ijvtpr.v2i1.23

Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., & Tufael. (2018, March 2). Advancing medical science through nanobiotechnology: Prospects, applications, and future directions. Journal of Primeasia, 1(1), 1–7. https://doi.org/10.25163/primeasia.1110163

Singh, B., Kaunert, C., & Gautam, R. (2025). Futuristic Med-Tech transforming healthcare industry: Nanorobotics for healthcare applications and management in action. In Elsevier eBooks (pp. 209–229). https://doi.org/10.1016/b978-0-443-24832-0.00011-8

Souto, E. B., Blanco-Llamero, C., Krambeck, K., Kiran, N. S., Yashaswini, C., Postwala, H., Severino, P., Priefer, R., Prajapati, B. G., & Maheshwari, R. (2024). Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomaterialia, 180, 1–17. https://doi.org/10.1016/j.actbio.2024.04.010

Stark, K., & Massberg, S. (2021). Interplay between inflammation and thrombosis in cardiovascular pathology. Nature Reviews Cardiology, 18(9), 666–682. https://doi.org/10.1038/s41569-021-00552-1

Tufael, M.?S.?B., Rana, M.?S., Das, S.?S., & Hossian, M. (2023). Nutritional evaluation of cassava meal components. Journal of Primeasia, 4(1), 1–4. https://doi.org/10.25163/angiotherapy.839572\

Tymianski, M. (2011). Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nature Neuroscience, 14(11), 1369–1373. https://doi.org/10.1038/nn.2951

Unciti-Broceta, A. (2015). Rise of the nanobots. Nature Chemistry, 7(7), 538–539. https://doi.org/10.1038/nchem.2291

Verhaar, M., Stroes, E., & Rabelink, T. (2002). Folates and cardiovascular disease. Arteriosclerosis Thrombosis and Vascular Biology, 22(1), 6–13. https://doi.org/10.1161/hq0102.102190

Vojdani, A., Vojdani, E., & Vojdani, C. (2020). The immune system: our body’s homeland security against disease. In Springer eBooks (pp. 285–302). https://doi.org/10.1007/978-3-030-30730-1_19

Westheim, A. J. F., Bitorina, A. V., Theys, J., & Shiri-Sverdlov, R. (2021). COVID-19 infection, progression, and vaccination: Focus on obesity and related metabolic disturbances. Obesity Reviews, 22(10). https://doi.org/10.1111/obr.13313

Yang, L., Li, A., Wang, Y., & Zhang, Y. (2023). Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-022-01304-4

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
5
View
0
Share