Leptin Levels, Lipid Profiles, and Central Fat Distribution in Atherosclerosis: Implications for Cardiovascular Disease Risk
Mathangi R1, Selvaraj J2, Reji M3, Jaideep M4, Ponnulakshmi R5, Nalini D4*, Samyuktha. P6, Pugazharasan6
Journal of Angiotherapy 5(2) 1-6 https://doi.org/10.25163/angiotherapy.52121512618181221
Submitted: 23 November 2021 Revised: 28 November 2021 Published: 18 December 2021
Abstract
Background: Leptin, an adipocyte-derived hormone, is overexpressed in atherosclerotic lesions and implicated in promoting thrombosis and atherosclerosis through pro-inflammatory signaling. Despite its known role in obesity-related cardiovascular diseases (CVDs), the precise relationship between leptin levels and various metabolic and anthropometric factors in atherosclerosis remains underexplored. Methods: This study aimed to investigate the role of leptin in the pathogenesis of atherosclerosis by measuring serum leptin levels in atherosclerosis patients and analyzing their correlation with anthropometric variables (waist-to-hip ratio, body mass index) and biochemical parameters (lipids, glucose). Participants included both atherosclerosis patients and non-CVD controls. Serum leptin, glucose, triglycerides, cholesterol, HDL, and LDL levels were measured, and anthropometric measurements were taken. Results: Serum leptin levels were significantly higher in atherosclerosis patients compared to non-CVD controls across all weight categories: normal weight (23.1 ± 5.1 ng/mL vs. 5.7 ± 3.8 ng/mL, p < 0.0001), overweight (30.2 ± 3.7 ng/mL vs. 10.5 ± 4.2 ng/mL, p < 0.0001), and obese (42.8 ± 4.5 ng/mL vs. 29.3 ± 9.1 ng/mL, p < 0.0001). Leptin levels positively correlated with BMI (r = 0.57, p < 0.0001) and were higher in normal weight atherosclerosis patients than in overweight controls, indicating possible leptin resistance. Additionally, atherosclerosis subjects exhibited elevated serum glucose, triglycerides, cholesterol, HDL, and LDL levels compared to controls, with significant differences noted in overweight subjects. Both systolic and diastolic blood pressures were higher in overweight atherosclerosis patients. Waist-to-hip ratio positively correlated with triglycerides (r = 0.42, p = 0.0001) and VLDL (r = 0.45, p < 0.0001) in atherosclerosis patients. Conclusion: Elevated leptin levels in atherosclerosis patients, alongside increased triglycerides and altered lipid profiles, suggest a role for leptin in the pathogenesis of atherosclerosis and associated cardiovascular risk. The positive correlation between waist-to-hip ratio and lipid parameters underscores the significance of central fat distribution in cardiovascular health.
Keywords: leptin, atherosclerosis, triglycerides, central fat distribution, cardiovascular disease
References
Agha, M., & Agha, R. (2017). The rising prevalence of obesity: Part A: Impact on public health. International Journal of Surgical Oncology (N Y), 2(7), e17. https://doi.org/10.1097/IJ9.0000000000000017
Babu, S., Krishnan, M., Rajagopal, P., Periyasamy, V., Veeraraghavan, V., Govindan, R., Jayaraman, S. (2020). Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. European Journal of Pharmacology, 873, 173004. https://doi.org/10.1016/j.ejphar.2020.173004
Beamount, J. L., Crison, L. A., Coope, G. R., Feifar, Z., Frederickson, D. S., & Strasser, T. (1972). Classification of hyperlipidemias and hyperlipoproteinemias. In Standard Methods of Clinical Chemistry (Vol. 9, pp. 123-135). Academic Press.
Chandrasekaran, K., Jayaraman, S., Umapathy, V. R., Veeraraghavan, V., Venkatachalam, S., Mathayan, M., Devarajan, N., Periyasamy, V., Vijayalakshmi, M., Manikkam, R., & Rajagopal, P. (2020). Molecular docking analysis of Bcl-2 with phytocompounds. Bioinformation, 16(6), 468-473. https://doi.org/10.6026/97320630016468
Cole, T. G., Klotzsch, S. G., & McNamara, J. (1997). Measurement of triglyceride concentration. In Handbook of Lipoprotein Testing. AACC Press.
D. Kannan, L. Pari, E. Paari, T. Gunaseelan, B. Tulsi, Deepak Singh, J. Selvaraj, V. Vishnupriya, R. Ponnulakshmi, B. Shyamaladevi, & K. Madhan. (2018). Changes in glycoprotein components in high-fat diet induced type 2 diabetes: Influence of cuminaldehyde. Drug Invention Today, 10(5), 3740-3745.
Dardeno, T. A., Chou, S. H., Moon, H. S., Chamberland, J. P., Fiorenza, C. G., & Mantzoros, C. S. (2010). Leptin in human physiology and therapeutics. Frontiers in Neuroendocrinology, 31(3), 377-393. https://doi.org/10.1016/j.yfrne.2010.06.002
Devarajan, N., Jayaraman, S., Mahendra, J., Venkatratnam, P., Rajagopal, P., Palaniappan, H., & Ganesan, S. K. (2021). Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytotherapy Research. https://doi.org/10.1002/ptr.7032
El Haouari, M., & Rosado, J. A. (2019). Phytochemical, anti-diabetic and cardiovascular properties of Urtica dioica L. (Urticaceae): A review. Mini Reviews in Medicinal Chemistry, 19(1), 63-71. https://doi.org/10.2174/1389557518666180924121528
Elsayed, E. F., Tighiouart, H., Weiner, D. E., Griffith, J., Salem, D., Levey, A. S., & Sarnak, M. J. (2008). Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. American Journal of Kidney Diseases, 52(1), 49-57. https://doi.org/10.1053/j.ajkd.2008.04.002
Golia, E., Limongelli, G., Natale, F., Fimiani, F., Maddaloni, V., Russo, P. E., Riegler, L., Bianchi, R., Crisci, M., Palma, G. D., Golino, P., Russo, M. G., Calabrò, R., & Calabrò, P. (2014). Adipose tissue and vascular inflammation in coronary artery disease. World Journal of Cardiology, 6(7), 539-554.
Gomez-Delgado, F., Katsiki, N., Lopez-Miranda, J., & Perez-Martinez, P. (2021). Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Critical Reviews in Food Science and Nutrition, 61(10), 1651-1669. https://doi.org/10.1080/10408398.2020.1764487
Hema, P., Selvaraj, J., & Nalini, D. (2019). Hypolipidemic properties of Aloe vera in female Swiss albino mice. Drug Invention Today, 12, 2377-2380.
Jayaraman, S., Devarajan, N., & Rajagopal, P. (2021). β-Sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathways in adipocytes of type 2 diabetic rats. Molecules, 26(7), 2101. https://doi.org/10.3390/molecules26072101
Kim, H. W., Shi, H., Winkler, M. A., Lee, R., & Weintraub, N. L. (2020). Perivascular adipose tissue and vascular perturbation/atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(11), 2569-2576. https://doi.org/10.1161/ATVBAHA.120.312470
Ku, I. A., Farzaneh-Far, R., Vittinghoff, E., Zhang, M. H., Na, B., & Whooley, M. A. (2011). Association of low leptin with cardiovascular events and mortality in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis, 217(2), 503-508. https://doi.org/10.1016/j.atherosclerosis.2010.10.047
Lovren, F., Teoh, H., & Verma, S. (2015). Obesity and atherosclerosis: Mechanistic insights. Canadian Journal of Cardiology, 31(2), 177-183. https://doi.org/10.1016/j.cjca.2014.11.031
Nalini, D., Karthick, R., Shirin, V., Manohar, G., & Malathi, R. (2015). Leptin: A possible link between obesity, inflammation, and cardiovascular diseases. Thrombosis Journal, 13, 1-7. https://doi.org/10.1186/s12959-015-0042-4
Nordestgaard, B. G., & Varbo, A. (2014). Triglycerides and cardiovascular disease. The Lancet, 384(9943), 626-635. https://doi.org/10.1016/S0140-6736(14)61177-6
Ponnulakshmi, R., Shyamaladevi, B., Vijayalakshmi, P., & Selvaraj, J. (2019). In silico and in vivo analysis to identify the antidiabetic activity of beta-sitosterol in adipose tissue of high-fat diet and sucrose induced type-2 diabetic experimental rats. Toxicology Mechanisms and Methods, 29(4), 276-290. https://doi.org/10.1080/15376516.2018.1545815
Rajagopal, R., Devarajan, N., Ganesan, M., & Raghunathan, M. (2012). Correlation between obesity and inflammation in cardiovascular diseases: Evaluation of leptin and inflammatory cytokines. Open Journal of Endocrine and Metabolic Diseases, 2, 7-15. https://doi.org/10.4236/ojemd.2012.22002
Rajendran, K., Devarajan, N., Ganesan, M., & Ragunathan, M. (2012). Obesity, inflammation, and acute myocardial infarction: Expression of leptin, IL-6, and high sensitivity-CRP in Chennai based population. Thrombosis Journal, 10, 1-6. https://doi.org/10.1186/1477-9560-10-13
Raskin, E. R., Nalini, D., & Malathi, R. (2008). Obesity, inflammation, and metabolic disorders. Indian Journal of Science and Technology, 1(4), 1-5. https://doi.org/10.17485/ijst/2008/v1i4.8
Redinger, R. N. (2007). The pathophysiology of obesity and its clinical manifestations. Gastroenterology & Hepatology (N Y), 3(11), 856-863.
Rocha, V., & Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology, 6, 399-409. https://doi.org/10.1038/nrcardio.2009.55
Shanthi, N., Mani, R., Nalini, D., Hema, P., & Thiriveni, G. S. B. (2016). Leptin: An immunomodulator in peripheral blood mononuclear cells. IOSR Journal of Dental and Medical Sciences, 15(1), 52-57.
Trinder, P. (1959). Determination of blood glucose using 4-aminoantipyrine. Journal of Clinical Pathology, 22, 246. https://doi.org/10.1136/jcp.22.2.246-b
World Health Organization. (n.d.). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Young, D. S. (2000). Effects of drugs on clinical laboratory tests (5th ed.). AACC Press.
View Dimensions
View Altmetric
Save
Citation
View
Share