Assessment of Lead Concentration in Turmeric Powder Marketed in Bangladesh: Ensuring Consumer Safety
Syeda Anjuman Ara Aunni1*, Md Mahedi Hasan Shabuj1, Asika Ayrin Naher1, Tahnia Basher2, Sheikh Mahdia Ahmed Lima3, Debashis Chandra Das4, Mst. Shahana Akter5, Shah Jalal6, Nadia Islam7
Australian Herbal Insight 7(1) 1-8 https://doi.org/10.25163/ahi.7110146
Submitted: 02 July 2024 Revised: 09 September 2024 Published: 10 September 2024
Abstract
Background: Turmeric, derived from the Curcuma longa plant, is widely consumed in Bangladesh for culinary and medicinal purposes. Its bright yellow color, attributed to curcumin, makes it a prized spice. However, concerns over heavy metal contamination, especially lead, pose potential health risks to consumers. Lead toxicity is associated with severe neurological, cardiovascular, and developmental health problems. Therefore, evaluating the lead concentration in turmeric powder is essential to safeguard public health. Methods: A laboratory-based analytical study was conducted at Hamdard University Bangladesh to determine lead concentrations in turmeric powder samples obtained from the local market. A total of three samples (TR, TA, and TB) were analyzed using the titration method with EDTA as the complexing agent. Results: The permissible lead limit for turmeric powder, as set by the Bangladesh Standards and Testing Institution (BSTI), is 2.5 mg/kg. The study found that lead concentrations in Sample 1 (TR) averaged 0.53 mg/kg, Sample 2 (TA) averaged 0.57 mg/kg, and Sample 3 (TB) averaged 0.55 mg/kg. All samples were within the permissible safety limit. Conclusion: The findings indicate that turmeric powder marketed in Bangladesh generally adheres to regulatory safety standards for lead content. Continuous monitoring and quality control are necessary to maintain this compliance and ensure public safety. Efforts should also focus on educating producers and consumers to minimize contamination risks and promote safer agricultural and processing practices.
Keywords: Turmeric Powder, Lead Contamination, Heavy Metal Toxicity, Titration Method, Food Safety
References
Alam, M. N. E., Hosen, M. M., Ullah, A. A., Maksud, M. A., Khan, S. R., Lutfa, L. N., ... & Quraishi, S. B. (2023). Lead Exposure of Four Biologically Important Common Branded and Non-branded Spices: Relative Analysis and Health Implication. Biological Trace Element Research, 1-13. https://doi.org/10.21203/rs.3.rs-2087533/v1
Apostoli, P., Kiss, P., Porru, S., Bonde, J. P., & Vanhoorne, M. (1998). Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occupational and environmental medicine, 55(6), 364-374.https://doi.org/10.1136/oem.55.6.364
Ara, A., & Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary toxicology, 8(2), 55. https://doi.org/10.1515/intox-2015-0009
Barbosa Jr, F., Tanus-Santos, J. E., Gerlach, R. F., & Parsons, P. J. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental health perspectives, 113(12), 1669-1674. https://doi.org/10.1289/ehp.7917
Bas, H., Kalender, Y., Pandir, D., & Kalender, S. (2015). Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes. Environmental toxicology and pharmacology, 39(3), 1019-1026.
Bellinger, D. C. (2008). Lead neurotoxicity and socioeconomic status: conceptual and analytical issues. Neurotoxicology, 29(5), 828-832. https://doi.org/10.1016/j.neuro.2008.04.005
Bellinger, D. C. (2008). Very low lead exposures and children's neurodevelopment. Current opinion in pediatrics, 20(2), 172-177. https://doi.org/10.1097/MOP.0b013e3282f4f97b
Bergeson, L. L. (2008). The proposed lead NAAQS: Is consideration of cost in the clean https://doi.org/10.1002/tqem.20197
Billings RJ, Berkowitz RJ, Watson G. Teeth. Pediatrics. 2004; 113:1120-1127. https://doi.org/10.1542/peds.113.S3.1120
Breeher, L., Mikulski, M. A., Czeczok, T., Leinenkugel, K., & Fuortes, L. J. (2015). A cluster of lead poisoning among consumers of Ayurvedic medicine. International journal of occupational and environmental health, 21(4), 303-307.
https://doi.org/10.1179/2049396715Y.0000000009
Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., & Palmer, R. (Eds.). (2016). Critical care toxicology. Springer. https://doi.org/10.1007/978-3-319-20790-2
Cleveland, L. M., Minter, M. L., Cobb, K. A., Scott, A. A., & German, V. F. (2008). Lead hazards for pregnant women and children: part 1: immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. AJN The American Journal of Nursing, 108(10), 40-49. https://doi.org/10.1097/01.NAJ.0000337736.76730.66
Cohen, A. R., Trotzky, M. S., & Pincus, D. (1981). Reassessment of the microcytic anemia of lead poisoning. Pediatrics, 67(6), 904-906. https://doi.org/10.1542/peds.67.6.904
Cowell, W., & Heiger-Bernays, W. (2018, August). Pb-Adulterated Turmeric: A Growing Problem. In ISEE Conference Abstracts (Vol. 2018, No. 1). https://doi.org/10.1289/isesisee.2018.P02.3490
Cowell, W., Ireland, T., Vorhees, D., & Heiger-Bernays, W. (2017). Ground turmeric as a source of lead exposure in the United States. Public Health Reports, 132(3), 289- 293. https://doi.org/10.1177/0033354917700109
de Freitas Araújo, M. G., & Bauab, T. M. (2012). Microbial quality of medicinal plant materials. Latest research into quality control, 67-81. https://doi.org/10.5772/51072
De Medeiros, P. M., Pinto, B. L. S., & do Nascimento, V. T. (2015). Can organoleptic properties explain the differential use of medicinal plants? Evidence from Northeastern Brazil. Journal of ethnopharmacology, 159, 43-48. https://doi.org/10.1016/j.jep.2014.11.001
Ekong, E. B., Jaar, B. G., & Weaver, V. M. (2006). Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney international, 70(12), 2074-2084. https://doi.org/10.1038/sj.ki.5001809
Forsyth, J. E., Nurunnahar, S., Islam, S. S., Baker, M., Yeasmin, D., Islam, M. S., ... & Luby, S. P. (2019). Turmeric means "yellow" in Bengali: Lead chromate pigments added to turmeric threaten public health across Bangladesh. Environmental research, 179, 108722. https://doi.org/10.1016/j.envres.2019.108722
Ganapathy, G., Preethi, R., Moses, J. A., & Anandharamakrishnan, C. (2019). Diarylheptanoids as nutraceutical: A review. Biocatalysis and agricultural biotechnology, 19, 101109. https://doi.org/10.1016/j.bcab.2019.101109
Gleason, K., Shine, J. P., Shobnam, N., Rokoff, L. B., Suchanda, H. S., Ibne Hasan, M. O. S., ... & Mazumdar, M. (2014). Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh. Journal of Environmental and Public Health, 2014. https://doi.org/10.1155/2014/730636
Gleason, K., Shine, J. P., Shobnam, N., Rokoff, L. B., Suchanda, H. S., Ibne Hasan, M. O. S., ... & Mazumdar, M. (2014). Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh. Journal of Environmental and Public Health, 2014. https://doi.org/10.1155/2014/730636
Gleason, K., Shine, J. P., Shobnam, N., Rokoff, L. B., Suchanda, H. S., Ibne Hasan, M. O. S., ... & Mazumdar, M. (2014). Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh. Journal of Environmental and Public Health, 2014. https://doi.org/10.1155/2014/730636
Grant LD. Lead and compounds. In: Lippmann M, editor. Environmental Toxicants: Human exposure and their health effects. 3rg ed. Wiley-Interscience; 2009. https://doi.org/10.1002/9780470442890.ch20
He, Y., von Lampe, K., Wood, L., & Kurti, M. (2015). Investigation of lead and cadmium in counterfeit cigarettes seized in the United States. Food and Chemical Toxicology, 81, 40-45. https://doi.org/10.1016/j.fct.2015.04.006
Islam, M. S., Chowdhury, A. I., Shill, L. C., Reza, S., & Alam, M. R. (2023). Heavy Metals Induced Health Risk Assessment Through Consumption of Selected Commercially Available Spices in Noakhali District of Bangladesh. medRxiv, 2023-02. https://doi.org/10.1101/2023.02.06.23285555
Jacobs, D. E., Clickner, R. P., Zhou, J. Y., Viet, S. M., Marker, D. A., Rogers, J. W., ... & Friedman, W. (2002). The prevalence of lead-based paint hazards in US housing. Environmental health perspectives, 110(10), A599-A606. https://doi.org/10.1289/ehp.021100599
Joshi, V. K., Joshi, A., & Dhiman, K. S. (2017). The Ayurvedic Pharmacopoeia of India, development and perspectives. Journal of ethnopharmacology, 197, 32-38. https://doi.org/10.1016/j.jep.2016.07.030
Jurdziak, M., Gac, P., Martynowicz, H., & Poreba, R. (2015). Function of respiratory system evaluated using selected spirometry parameters in persons occupationally exposed to lead without evident health problems. Environmental toxicology and pharmacology, 39(3), 1034-1040. https://doi.org/10.1016/j.etap.2015.03.009
Kaaya, N. A., & Warren, H. L. (2005). Review of past and present research on Aflatoxin in Uganda. African Journal of Food, Agriculture, Nutrition and Development, 5(1). https://doi.org/10.18697/ajfand.8.1200
Kaiser, R., Henderson, A. K., Daley, W. R., Naughton, M., Khan, M. H., Rahman, M., ... & Rubin, C. H. (2001). Blood lead levels of primary school children in Dhaka, Bangladesh. Environmental Health Perspectives, 109(6), 563-566.
https://doi.org/10.1289/ehp.01109563
Karri, S. K., Saper, R. B., & Kales, S. N. (2008). Lead encephalopathy due to traditional medicines. Current drug safety, 3(1), 54-59. https://doi.org/10.2174/157488608783333907
Khongkaew, P., Phechkrajang, C., Cruz, J., Cárdenas, V., & Rojsanga, P. (2020). Quantitative models for detecting the presence of lead in turmeric using Raman spectroscopy. Chemometrics and Intelligent Laboratory Systems, 200, 103994. https://doi.org/10.1016/j.chemolab.2020.103994
B. S., ... & Woolf, A. (2007). Recommendations for medical management of adult lead exposure. Environmental health perspectives, 115(3), 463-471. https://doi.org/10.1289/ehp.9784
Landrigan, P. J., Schechter, C. B., Lipton, J. M., Fahs, M. C., & Schwartz, J. (2002). Environmental pollutants and disease in American children: estimates of morbidity, mortality, and costs for lead poisoning, asthma, cancer, and developmental disabilities. Environmental health perspectives, 110(7), 721-728. https://doi.org/10.1289/ehp.02110721
Levin, R., Brown, M. J., Kashtock, M. E., Jacobs, D. E., Whelan, E. A., Rodman, J., ... & Sinks, T. (2008). Lead exposures in US children, 2008: implications for prevention. Environmental health perspectives, 116(10), 1285-1293. https://doi.org/10.1289/ehp.11241
Liu, Y., Shi, Y., Cai, L., Hao, Y., & Zhao, C. (2013). Determination of copper, zinc, cadmium and lead in water using co-precipitation method and raman spectroscopy. Journal of Innovative Optical Health Sciences, 6(03), 1350021. https://doi.org/10.1142/S1793545813500211
Mai, F. M. (2006). Beethoven's terminal illness and death. JOURNAL-ROYAL COLLEGE OF PHYSICIANS OF EDINBURGH, 36(3), 258. https://doi.org/10.1177/1478271520063603021
G. O. R. Y., Boch, K., & Boch, S. T. E. V. E. N. (1990). A case report of lead paint poisoning during renovation of a Victorian farmhouse. American Journal of Public Health, 80(10), 1183-1185. https://doi.org/10.2105/AJPH.80.10.1183
Meyer, P. A., McGeehin, M. A., & Falk, H. (2003). A global approach to childhood lead poisoning prevention. International journal of hygiene and environmental health, 206(4-5), 363-369. https://doi.org/10.1078/1438-4639-00232
Mitra, A. K., Ahua, E., & Saha, P. K. (2012). Prevalence of and risk factors for lead poisoning in young children in Bangladesh. Journal of Health, Population, and Nutrition, 30(4), 404. https://doi.org/10.3329/jhpn.v30i4.13292
Moore, M. R. (1977). Lead in drinking water in soft water areas-health hazards. Science of the Total Environment, 7(2), 109-115. https://doi.org/10.1016/0048-9697(77)90002-X
Needleman, H. L., Schell, A., Bellinger, D., Leviton, A., & Allred, E. N. (1990). The long- term effects of exposure to low doses of lead in childhood: an 11-year follow-up report. New England journal of medicine, 322(2), 83-88. https://doi.org/10.1056/NEJM199001113220203
Nevin, R. (2007). Understanding international crime trends: the legacy of preschool lead exposure. Environmental research, 104(3), 315-336. https://doi.org/10.1016/j.envres.2007.02.008
Paranthaman, R., Moses, J. A., & Anandharamakrishnan, C. (2021). Development of a method for qualitative detection of lead chromate adulteration in turmeric powder using X-ray powder diffraction. Food Control, 126, 107992. https://doi.org/10.1016/j.foodcont.2021.107992
Park, S. K., O'Neill, M. S., Vokonas, P. S., Sparrow, D., Wright, R. O., Coull, B., ... & Schwartz, J. (2008). Air pollution and heart rate variability: effect modification by chronic lead exposure. Epidemiology, 19(1), 111-120. https://doi.org/10.1097/EDE.0b013e31815c408a
Pearce, J. M. S. (2007). Burton's line in lead poisoning. European neurology, 57(2), 118- 119. https://doi.org/10.1159/000098100
Prabhangshu, K.D., Milton, H., Mujib, A.S.M., Faridul, I., Mahmud, A. S. M., Samina, A. and Joardar, J.C. 2015. Heavy Metal Concentration in Some Common Spices Available at Local Market as well as Branded Spicy in Chittagong Metropolitan City, Bangladesh, Current World Environment, 10(1): 101-108. https://doi.org/10.12944/CWE.10.1.12
Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F. Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol. 1996;136:361-71. https://doi.org/10.1006/taap.1996.0044
Roy, A., Queirolo, E., Peregalli, F., Mañay, N., Martínez, G., & Kordas, K. (2015). Association of blood lead levels with urinary F2-8α isoprostane and 8-hydroxy-2- deoxy-guanosine concentrations in first-grade Uruguayan children. Environmental research, 140, 127-135. https://doi.org/10.1016/j.envres.2015.03.001
Schoeters, G., Den Hond, E., Dhooge, W., Van Larebeke, N., & Leijs, M. (2008). Endocrine disruptors and abnormalities of pubertal development. Basic & clinical pharmacology & toxicology, 102(2), 168-175. https://doi.org/10.1111/j.1742-7843.2007.00180.x
Singh, P. A., Bajwa, N., & Baldi, A. (2021). A comparative review on the standard quality parameters of turmeric. Indian Journal of Natural Products, 35(1). https://doi.org/10.5530/ijnp.2021.1.2
Singh, P. A., Bajwa, N., Naman, S., & Baldi, A. (2020). A review on robust computational approaches based identification and authentication of herbal raw drugs. Letters in Drug Design & Discovery, 17(9), 1066-1083. https://doi.org/10.2174/1570180817666200304125520
Singh, P. A., Bajwa, N., Naman, S., & Baldi, A. (2020). A review on robust computational approaches-based identification and authentication of herbal raw drugs. Letters in Drug Design & Discovery, 17(9), 1066-1083. https://doi.org/10.2174/1570180817666200304125520
Sokol, R. Z., Wang, S., Wan, Y. J. Y., Stanczyk, F. Z., Gentzschein, E., & Chapin, R. E. (2002). Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat. Environmental health perspectives, 871-874. https://doi.org/10.1289/ehp.02110871
Verma, S., & Singh, S. P. (2008). Current and future status of herbal medicines. Veterinary world, 1(11), 347. https://doi.org/10.5455/vetworld.2008.347-350
Wadi, S. A., & Ahmad, G. (1999). Effects of lead on the male reproductive system in mice. Journal of Toxicology and Environmental Health Part A, 56(7), 513-521. https://doi.org/10.1080/009841099157953
Wedeen, R. P., Maesaka, J. K., Weiner, B., Lipat, G. A., Lyons, M. M., Vitale, L. F., & Joselow, M. M. (1975). Occupational lead nephropathy. The American Journal of Medicine, 59(5), 630-641. https://doi.org/10.1016/0002-9343(75)90224-7
Xu, J., Yan, H. C., Yang, B., Tong, L. S., Zou, Y. X., & Tian, Y. (2009). Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats. Journal of negative results in biomedicine, 8, 1-8. https://doi.org/10.1186/1477-5751-8-5
Yu, C. C., Lin, J. L., & Lin-Tan, D. T. (2004). Environmental exposure to lead and progression of chronic renal diseases: a four-year prospective longitudinal study. Journal of the American Society of Nephrology, 15(4), 1016-1022. https://doi.org/10.1097/01.ASN.0000118529.01681.4F
Zhang, H., Liu, Y., Zhang, R., Liu, R., & Chen, Y. (2014). Binding mode investigations on the interaction of lead (II) acetate with human chorionic gonadotropin. The Journal of Physical Chemistry B, 118(32), 9644-9650. https://doi.org/10.1021/jp505565s
View Dimensions
View Altmetric
Save
Citation
View
Share