Microbial Bioactives | Online ISSN 2209-2161
REVIEWS   (Open Access)

Bioinformatics in Microbiology: Reviewing the role of bioinformatics in studying microbial genomics, metagenomics, and phylogenetics

Tufael1*, Md Abu Bakar Siddique2

+ Author Affiliations

Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110370

Submitted: 16 March 2025 Revised: 01 May 2025  Published: 03 May 2025 


Abstract

Background: The intersection of biology and information technology has sparked a digital revolution in microbiology. Microorganisms, often invisible yet profoundly influential, have become central to studies of genomics, metagenomics, and phylogenetics. Bioinformatics provides essential computational tools that allow researchers to explore microbial genomes, uncover the genetic basis of infectious diseases, and address microbial resistance. Methods: By employing advanced computational analysis, bioinformatics facilitates the extraction, sequencing, and interpretation of microbial genetic material. Metagenomic approaches enable the study of entire microbial communities directly from environmental samples, while phylogenetic tools allow the mapping of evolutionary relationships through complex algorithmic models. Results: The integration of bioinformatics has transformed microbiology by enhancing precision in genome analysis, offering insights into microbial community structures, and clarifying evolutionary histories. These results provide a comprehensive understanding of microbial diversity, ancestry, and adaptation, yielding novel knowledge relevant to health, disease, and environmental conservation. Discussion: Bioinformatics acts as both a compass and storyteller in microbiology, guiding researchers through vast genomic landscapes and narrating the evolutionary journeys of microorganisms. Its role has redefined traditional approaches by enabling high-resolution analysis of microbial life, fostering interdisciplinary collaboration, and opening pathways to innovative discoveries in microbial ecology and medical microbiology. Conclusion: Bioinformatics has emerged as a pivotal force in decoding microbial genomes, metagenomes, and evolutionary relationships. This symbiosis of computational power and biological science is reshaping the understanding of microorganisms, offering promising applications in disease control, ecological sustainability, and biotechnology. The fusion of biology and informatics continues to illuminate the hidden complexities of microbial life.

Keywords: Bioinformatics, Microbial Genomics, Metagenomics, Phylogenetics, Microbial Diversity, Computational Biology

References

Afiahayati, Sato, K., & Sakakibara, Y. (2015). MetaVelvet-SL: An extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Research, 22(1), 69–77. https://doi.org/10.1093/dnares/dsu041

Attwood, T. K., Blackford, S., Brazas, M. D., Davies, A., Schneider, M. V., & Avison, H. (2010). A global perspective on evolving bioinformatics and data science training needs. Briefings in Bioinformatics, 11(6), 582–591.

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., … & Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9(1), 1–15. https://doi.org/10.1186/1471-2164-9-75

Baxevanis, A. D., & Ouellette, B. F. (2005). Bioinformatics: A practical guide to the analysis of genes and proteins. John Wiley & Sons.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., … & Minimum Information About a Microarray Experiment (MIAME) Consortium. (2001). Minimum information about a microarray experiment (MIAME): Toward standards for microarray data. Nature Genetics, 29(4), 365–371. https://doi.org/10.1038/ng1201-365

Cowan, D. A., Arslanoglu, A., Burton, S. G., Baker, G. C., Cameron, R. A., Smith, J. J., & Meyer, Q. (2004). Metagenomics, gene discovery and the ideal biocatalyst. Biochemical Society Transactions, 32(2), 298–302. https://doi.org/10.1042/bst0320298

Curtis, T. P., Sloan, W. T., & Scannell, J. W. (2002). Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences, 99(16), 10494–10499. https://doi.org/10.1073/pnas.142680199

Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23(6), 673–679. https://doi.org/10.1093/bioinformatics/btm009

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., … & D'Eustachio, P. (2016). The Reactome pathway knowledgebase. Nucleic Acids Research, 44(D1), D481–D487. https://doi.org/10.1093/nar/gkv1351

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., … & Venter, J. C. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496–512. https://doi.org/10.1126/science.7542800

Gabaldón, T. (2008). Comparative genomics-based prediction of protein function. In Genomics Protocols (pp. 387–401). Humana Press. https://doi.org/10.1007/978-1-59745-188-8_26

Glass, E. M., Wilkening, J., Wilke, A., Antonopoulos, D., & Meyer, F. (2010). Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harbor Protocols, 2010, pdb.prot5368. https://doi.org/10.1101/pdb.prot5368

Glass, E. M., Wilkening, J., Wilke, A., Antonopoulos, D., & Meyer, F. (2010). Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harbor Protocols, 2010, pdb.prot5368. https://doi.org/10.1101/pdb.prot5368

Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17, 333–351. https://doi.org/10.1038/nrg.2016.49

Hogeweg, P. (2011). The roots of bioinformatics in theoretical biology. PLoS Computational Biology, 7(3), e1002021. https://doi.org/10.1371/journal.pcbi.1002021

Jones, D. T. (2000). Protein structure prediction in the postgenomic era. Current Opinion in Structural Biology, 10(3), 371–379. https://doi.org/10.1016/S0959-440X(00)00099-3

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., … & Yamanishi, Y. (2007). KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(Suppl_1), D480–D484. https://doi.org/10.1093/nar/gkm882

Katsila, T., Patrinos, G. P., & Mitropoulou, C. (2016). Pharmacogenomics and pharmacogenetics of personalized medicine: Recent developments and future challenges. In Personalized medicine (pp. 43–57). Elsevier.

Khanna, V. K. (2007). Existing and emerging detection technologies for DNA (deoxyribonucleic acid) fingerprinting, sequencing, bio- and analytical chips: A multidisciplinary development unifying molecular biology, chemical and electronics engineering. Biotechnology Advances, 25(1), 85–98. https://doi.org/10.1016/j.biotechadv.2006.10.003

Kitano, H. (2002). Systems biology: A brief overview. Science, 295(5560), 1662–1664. https://doi.org/10.1126/science.1069492

Lamb, J. (2007). The Connectivity Map: A new tool for biomedical research. Nature Reviews Cancer, 7(1), 54–60. https://doi.org/10.1038/nrc2044

Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944

Le Novère, N. (2015). Quantitative and logic modelling of molecular and gene networks. Nature Reviews Genetics, 16(3), 146–158. https://doi.org/10.1038/nrg3885

Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … & Jin, W. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012, 251364. https://doi.org/10.1155/2012/251364

Liu, M. Y., Kjelleberg, S., & Thomas, T. (2011). Functional genomic analysis of an uncultured δ-proteobacterium in the sponge Cymbastela concentrica. The ISME Journal, 5(3), 427–435. https://doi.org/10.1038/ismej.2010.139

Loman, N. J., & Watson, M. (2015). Successful test launch for nanopore sequencing. Nature Methods, 12(4), 303–304. https://doi.org/10.1038/nmeth.3327

Lomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Research, 28(7), 1079–1089. https://doi.org/10.1101/gr.230615.117

Markowitz, V. M., Ivanova, N. N., Szeto, E., Palaniappan, K., Chu, K., Dalevi, D., … & Kyrpides, N. C. (2007). IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Research, 36(Suppl_1), D534–D538. https://doi.org/10.1093/nar/gkm869

Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., … & Finn, R. D. (2015). The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Research, 43, D213–D221. https://doi.org/10.1093/nar/gku1243

Nagarajan, N., & Pop, M. (2013). Sequence assembly demystified. Nature Reviews Genetics, 14(3), 157–167. https://doi.org/10.1038/nrg3367

Nakashima, N., Mitani, Y., & Tamura, T. (2005). Actinomycetes as host cells for production of recombinant proteins. Microbial Cell Factories, 4(1), 7. https://doi.org/10.1186/1475-2859-4-7

Noguchi, H., Park, J., & Takagi, T. (2006). MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Research, 34(19), 5623–5630. https://doi.org/10.1093/nar/gkl723

Ouzounis, C. (2002). Bioinformatics and the theoretical foundations of molecular biology. Bioinformatics, 18(3), 377–378. https://doi.org/10.1093/bioinformatics/18.3.377

Ouzounis, C. A. (2012). Rise and demise of bioinformatics? Promise and progress. PLoS Computational Biology, 8(7), e1002487. https://doi.org/10.1371/journal.pcbi.1002487

Peng, Y., Leung, H. C., Yiu, S. M., & Chin, F. Y. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420–1428. https://doi.org/10.1093/bioinformatics/bts174

Roehe, R., Dewhurst, R. J., Duthie, C. A., Rooke, J. A., McKain, N., Ross, D. W., … & Wallace, R. J. (2016). Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genetics, 12(2), e1005846. https://doi.org/10.1371/journal.pgen.1005846

Sharma, B., & Shukla, P. (2020). Designing synthetic microbial communities for effectual bioremediation: A review. Biocatalysis and Biotransformation, 38(6), 405–414. https://doi.org/10.1080/10242422.2020.1813727

Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. https://doi.org/10.1038/nbt1486

Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., … & Bork, P. (2015). Structure and function of the global ocean microbiome. Science, 348, 1261359. https://doi.org/10.1126/science.1261359

Treangen, T. J., Koren, S., Sommer, D. D., Liu, B., Astrovskaya, I., Ondov, B., … & Pop, M. (2013). MetAMOS: A modular and open source metagenomic assembly and analysis pipeline. Genome Biology, 14, R2. https://doi.org/10.1186/gb-2013-14-1-r2

Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 26(9), 522–530. https://doi.org/10.1016/j.tibtech.2009.05.006

Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., … & Smith, H. O. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667), 66–74. https://doi.org/10.1126/science.1093857

Wang, Q., Fish, J. A., Gilman, M., Sun, Y., Brown, C. T., Tiedje, J. M., & Cole, J. R. (2015). Xander: Employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome, 3, 1–13. https://doi.org/10.1186/s40168-015-0093-6

Watson, M. (2014). Illuminating the future of DNA sequencing. Genome Biology, 15(1), 4165. https://doi.org/10.1186/gb4165

Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821–829. https://doi.org/10.1101/gr.074492.107


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
76
View
0
Share