Bioinfo Chem
Computational Elucidation of EGCG Interaction with PD-L1: A Natural Strategy for Immune Checkpoint Modulation in Melanoma
Shahadat Hossain1*, Moin Uddin Patwary2, Md Abdus Samad3, Hossen Md. Arafat4
Bioinfo Chem 7(1) 1-8 https://doi.org/10.25163/bioinformatics.7110477
Submitted: 04 January 2025 Revised: 01 October 2025 Published: 10 October 2025
Epigallocatechin gallate (EGCG) offers a safe, natural alternative to antibody therapies by directly targeting PD-L1 and modulating immune response pathways.
Abstract
Background: The PD-1/PD-L1 immune checkpoint pathway is a well-known mechanism that cancer cells use to escape immune surveillance. Although monoclonal antibodies like Atezolizumab have been approved to block this pathway, they present challenges such as high cost, injection-based delivery, and immune-related side effects. In this context, Epigallocatechin gallate (EGCG), a natural polyphenol from green tea, is considered a potential alternative due to its anticancer and immunomodulatory properties. This study aims to investigate the binding interaction, structural dynamics, drug-likeness, and immunological impact of EGCG as a natural PD-L1 inhibitor using computational approaches.
Methods: The 3D structure of PD-L1 (PDB ID: 5J89) was retrieved from RCSB and prepared using PyMOL. EGCG was obtained from PubChem and docked using PyRx with AutoDock Vina. Molecular dynamics and structural flexibility were assessed via iMODS. Drug-likeness and ADME properties were predicted using SwissADME, while toxicity profiles were analyzed using ProTox-II. Immune-related GO enrichment analysis was conducted to identify functional pathways. Atezolizumab was used as a reference PD-L1 inhibitor for comparative evaluation.
Results: EGCG showed a strong binding affinity (−8.1 kcal/mol) with PD-L1, forming stable hydrogen bonds with residues GLU58, VAL76, and ARG113. Molecular dynamics analysis indicated ligand-induced flexibility and stabilization. SwissADME predicted good GI absorption, drug-likeness, and moderate lipophilicity, while ProTox-II classified EGCG as non-toxic with low risk of hepatotoxicity and immunotoxicity. GO enrichment revealed involvement in key immune pathways, including T-cell activation, cytokine regulation, and immune response modulation. Overall, EGCG demonstrated strong potential as a safe, natural PD-L1 modulator.
Conclusion: This in silico study supports EGCG as a promising, safe, and naturally derived PD-L1 modulator with potential applications in cancer immunotherapy.
Keywords: Epigallocatechin gallate (EGCG), PD-L1 inhibition, Cancer immunotherapy, Molecular docking, Molecular dynamics simulation
References
Akter, M. F., Islam, M. R., Manica, A. K., Siddique, M. A. B., Tufael (2022). "Structural and Pharmacological Insights into Withaferin a Binding to Mutant p53 (R248Q): Multi-Faceted Inhibitor in Cancer Treatment", Journal of Angiotherapy, 6(2),1-8,10432. https://doi.org/10.25163/angiotherapy.6210432
AmeliMojarad, M., AmeliMojarad, M., & Cui, X. (2023). Prospective role of PD-1/PD-L1 immune checkpoint inhibitors in GI cancer. Pathology - Research and Practice, 244, 154338. https://doi.org/10.1016/j.prp.2023.154338
Md Abdur Rahman Biswash, Md Abu Bakar Siddique, Md Mahedi Hasan Shabuj, Syeda Anjuman Ara Aunni, Md Moshiur Rahman, Debashis Chandra Das, Tufael (2024). "Advancing Personalized Cancer Care: Integrating CRISPR/Cas9 with Next-Generation Sequencing Technologies", Journal of Precision Biosciences, 6(1),1-14,6110004 https://doi.org/10.25163/biosciences.6110004
Chen, Z., Kankala, R. K., Yang, Z., Li, W., Xie, S., Li, H., Chen, A.-Z., & Zou, L. (2022). Antibody-based drug delivery systems for cancer therapy: Mechanisms, challenges, and prospects. Theranostics, 12(8), 3719–3746. https://doi.org/10.7150/thno.72594
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
García-Rodríguez, M. D. C., Serrano-Reyes, G., Hernández-Cortés, L. M., & Altamirano-Lozano, M. (2021). Antigenotoxic effects of (-)-epigallocatechin-3-gallate (EGCG) and its relationship with the endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct repair (8-OHdG), and apoptosis in mice exposed to chromium(VI). Journal of Toxicology and Environmental Health, Part A, 84(8), 331–344. https://doi.org/10.1080/15287394.2020.1867275
Ghemrawi, R., Abuamer, L., Kremesh, S., Hussien, G., Ahmed, R., Mousa, W., Khoder, G., & Khair, M. (2024). Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines, 12(9), 2158. https://doi.org/10.3390/biomedicines12092158
Gonçalves, P. B., Sodero, A. C. R., & Cordeiro, Y. (2021). Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules, 11(5), 767. https://doi.org/10.3390/biom11050767
Gonzalez Suarez, N., Fernandez-Marrero, Y., Torabidastgerdooei, S., & Annabi, B. (2022). EGCG Prevents the Onset of an Inflammatory and Cancer-Associated Adipocyte-like Phenotype in Adipose-Derived Mesenchymal Stem/Stromal Cells in Response to the Triple-Negative Breast Cancer Secretome. Nutrients, 14(5), 1099. https://doi.org/10.3390/nu14051099
Guo, Y., Guo, Y., Guo, Z., Liu, B., & Xu, J. (2023). Effect of Fragment 1 on the Binding of Epigallocatechin Gallate to the PD-L1 Dimer Explored by Molecular Dynamics. Molecules, 28(23), 7881. https://doi.org/10.3390/molecules28237881
Guo, Y., Liang, J., Liu, B., & Jin, Y. (2021). Molecular Mechanism of Food-Derived Polyphenols on PD-L1 Dimerization: A Molecular Dynamics Simulation Study. International Journal of Molecular Sciences, 22(20), 10924. https://doi.org/10.3390/ijms222010924
Hwang, S., Koo, I., Patterson, A. D., & Lambert, J. D. (2023). Comparative urine metabolomics of mice treated with non-toxic and toxic oral doses of (−)-epigallocatechin-3-gallate. Food & Function, 14(20), 9434–9445. https://doi.org/10.1039/D3FO02710D
Islam, M. R., Manica, A. K., Akter, M. F., Siddique, M. A. B., Tufael (2023). "In Silico Drug-Likeness and Safety Profiling of Tinosporaside: A Natural Alternative to Celecoxib for COX-2 Inhibition", Journal of Primeasia, 4(1),1-8,10434. https://doi.org/10.25163/primeasia.4110434
Jiang, M., Liu, M., Liu, G., Ma, J., Zhang, L., & Wang, S. (2023). Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1. MAbs, 15(1). https://doi.org/10.1080/19420862.2023.2236740
Kang, Q., Tong, Y., Gowd, V., Wang, M., Chen, F., & Cheng, K.-W. (2021). Oral administration of EGCG solution equivalent to daily achievable dosages of regular tea drinkers effectively suppresses miR483-3p induced metastasis of hepatocellular carcinoma cells in mice. Food & Function, 12(8), 3381–3392. https://doi.org/10.1039/D1FO00664A
Kong, C., Zhang, H., Li, L., & Liu, Z. (2022). Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. Journal of Oral Microbiology, 14(1). https://doi.org/10.1080/20002297.2022.2131117
Li, M., Zhao, R., Chen, J., Tian, W., Xia, C., Liu, X., Li, Y., Li, S., Sun, H., Shen, T., Ren, W., & Sun, L. (2021). Next generation of anti-PD-L1 Atezolizumab with enhanced anti-tumor efficacy in vivo. Scientific Reports, 11(1), 5774. https://doi.org/10.1038/s41598-021-85329-9
Mali, S. N., & Pandey, A. (2021). Unveiling Naturally Occurring Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) Targeting Mycobacterium DPRE1 for Anti-Tb Drug Discovery. The 2nd International Electronic Conference on Applied Sciences, 31. https://doi.org/10.3390/ASEC2021-11185
Manica, A. K., Akter, M. F., Islam, M. R., Tufael, Siddique, M. A. B. (2022). "Computational Exploration of Xanthohumol as a Safer Natural Substitute for Tamoxifen in Estrogen Receptor-Positive Breast Cancer", Journal of Angiotherapy, 6(2),1-8,10431. https://doi.org/10.25163/angiotherapy.6210431
Manica, A. K., Tufael, Siddique, M. A. B., Akter, M. F., Islam, M. R. (2023). "In Silico Repurposing of FDA-approved Drugs Targeting Keap1-NRF2 Axis in Hepatocellular Carcinoma for Precision Therapy", Journal of Precision Biosciences, 5(1),1-8,10436 https://doi.org/10.25163/biosciences.5110436
Manica, A. K., Siddique, M. A. B., Tufael, Akter, M. F., Islam, M. R. (2024). "Targeted Drug Repurposing in Precision Oncology Reveals Celecoxib as a GSK-3β Inhibitor in Hepatocellular Carcinoma", Journal of Precision Biosciences, 6(1),1-8,10440 https://doi.org/10.25163/biosciences.6110440
Manica, A. K., Islam, M. R., Siddique, M. A. B., Akter, M. F., Tufael (2024). "Tanshinone IIA as a Promising Natural Inhibitor of the STING Pathway: A Computational Exploration Toward Neuroinflammatory Therapy", Australian Herbal Insight, 7(1),1-8,10441 https://doi.org/10.25163/herbal.7110441
Mehmood, S., Maqsood, M., Mahtab, N., Khan, M. I., Sahar, A., Zaib, S., & Gul, S. (2022). Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies. Journal of Food Biochemistry, 46(8). https://doi.org/10.1111/jfbc.14189
Messeha, S. S., Zarmouh, N. O., & Soliman, K. F. A. (2021). Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients, 13(5), 1718. https://doi.org/10.3390/nu13051718
Mokra, D., Adamcakova, J., & Mokry, J. (2022). Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants, 11(8), 1566. https://doi.org/10.3390/antiox11081566
Mokra, D., Joskova, M., & Mokry, J. (2022). Therapeutic Effects of Green Tea Polyphenol (?)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. International Journal of Molecular Sciences, 24(1), 340. https://doi.org/10.3390/ijms24010340
Mvondo, J. G. M., Matondo, A., Mawete, D. T., Bambi, S.-M. N., Mbala, B. M., & Lohohola, P. O. (2021). In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. International Journal of TROPICAL DISEASE & Health, 1–12. https://doi.org/10.9734/ijtdh/2021/v42i1130492
Parvez, A., Choudhary, F., Mudgal, P., Khan, R., Qureshi, K. A., Farooqi, H., & Aspatwar, A. (2023). PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1296341
Raghani, N. R., Chorawala, M. R., Mahadik, M., Patel, R. B., Prajapati, B. G., & Parekh, P. S. (2024). Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Medical Oncology, 41(2), 51. https://doi.org/10.1007/s12032-023-02280-7
Ravindran Menon, D., Li, Y., Yamauchi, T., Osborne, D. G., Vaddi, P. K., Wempe, M. F., Zhai, Z., & Fujita, M. (2021). EGCG Inhibits Tumor Growth in Melanoma by Targeting JAK-STAT Signaling and Its Downstream PD-L1/PD-L2-PD1 Axis in Tumors and Enhancing Cytotoxic T-Cell Responses. Pharmaceuticals, 14(11), 1081. https://doi.org/10.3390/ph14111081
Siddique, M. A. B., Debnath, A., Ullah, M. S., Amin, M. S., Rahman, A., Mou, M. A., Biswash, M. A. R., Tamim, M. S. B. N., Akter, M. S., Ahmed, B., Numan, A. A., Shabuj, M. M. H. (2025). "Targeting p38 MAPK: Molecular Docking and Therapeutic Insights for Alzheimer’s Disease Management", Journal of Primeasia, 6(1),1-11,10116 https://doi.org/10.25163/primeasia.6110116
Tang, C. jia, Lv, Y. shuang, Chen, Z. liang, & Huang, C. cheng. (2024). Design and development of a novel sensor for the detection of Atezolizumab as a liver cancer medicine in drinking water sources. Journal of Food Measurement and Characterization, 18(7), 5411–5422. https://doi.org/10.1007/s11694-024-02576-w
Trivedi, A., Ahmad, R., Siddiqui, S., Misra, A., Khan, M. A., Srivastava, A., Ahamad, T., Khan, Mohd. F., Siddiqi, Z., Afrin, G., Gupta, A., Upadhyay, S., Husain, I., Ahmad, B., Mehrotra, S., & Kant, S. (2022). Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: an in silico analysis. Journal of Biomolecular Structure and Dynamics, 40(20), 9648–9700. https://doi.org/10.1080/07391102.2021.1932601
Xu, D., Peng, S., Guo, R., Yao, L., Mo, H., Li, H., Song, H., & Hu, L. (2021). EGCG Alleviates Oxidative Stress and Inhibits Aflatoxin B1 Biosynthesis via MAPK Signaling Pathway. Toxins, 13(10), 693. https://doi.org/10.3390/toxins13100693
Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618
Yang, X., Liu, M., Jiang, K., Wang, B., & Wang, L. (2024). Metabolomics and transcriptomics analysis reveals the enhancement of growth, anti-oxidative stress and immunity by (-)-epigallocatechin-3-gallate in Litopenaeus vannamei. Fish & Shellfish Immunology, 155, 110025. https://doi.org/10.1016/j.fsi.2024.110025
Yuliati, Y., Yasmin Mahdani, F., Putri Khansa, S., Pongsumae, D., Putri Yastuti, W. T., Afif Wardana, M., Condro Surboyo, M. D., Aljunaid, M., Rashad Qaid, H., Sjuhada Oki, A., Abbas Thalib, F., Devijanti Ridwan, R., & Diyatri, I. (2024). The Viability of Osteoblasts against SHED Metabolites and EGCG for Biomaterial Osteogenesis. Research Journal of Pharmacy and Technology, 4015–4021. https://doi.org/10.52711/0974-360X.2024.00623
View Dimensions
View Altmetric
Save
Citation
View
Share