Bioinfo Chem
Computational Repurposing of Flavokawain B as a Novel p38 MAPK Inhibitor for Triple-Negative Breast Cancer Therapy
Abdullah Bhuyan1*, Shahadat Hossain2, Moin Uddin Patwary1, Shamim Al Mamun1, Tanjila Hasan Tulon1
Bioinfo Chem 7 (1) 1-8 https://doi.org/10.25163/bioinformatics.7110456
Submitted: 10 November 2024 Revised: 20 January 2025 Accepted: 25 January 2025 Published: 27 January 2025
Abstract
Background: Triple-Negative Breast Cancer (TNBC) is an aggressive and therapeutically challenging subtype with poor clinical outcomes. Among various oncogenic targets, p38 MAPK α (MAPK14) regulates key pathways in cell survival, apoptosis, and inflammatory responses. Despite its therapeutic relevance, MAPK14 remains underexplored in the context of natural compound–based interventions for TNBC. This study aims to fill that gap by evaluating plant-derived ligands with multi-targeted potential and better safety profiles as novel MAPK14 inhibitors for targeted cancer therapy.
Methods: This study employed a comprehensive in silico strategy to evaluate two phytochemicals, Epigallocatechin-3-gallate (EGCG) and Flavokawain B (FKB), as potential MAPK14 inhibitors. Molecular docking was performed using AutoDock Vina against the MAPK14 protein (PDB ID: 1A9U), followed by interaction visualization. ADME-Tox profiling was conducted using SwissADME and ProTox-II, while pathway analysis was performed via Cytoscape to explore downstream network connectivity.
Results: EGCG demonstrated high binding affinity (-8.0 kcal/mol) and diverse hydrogen bonding and π-type interactions, but showed limitations in GI absorption and bioavailability. In contrast, FKB exhibited slightly lower binding energy (-7.7 kcal/mol) but greater structural stability across docking poses, with superior pharmacokinetic features, including high GI absorption, BBB permeability, and low predicted toxicity. Network analysis indicated both compounds may influence apoptotic signaling via MAP2K3, TP53, and STAT1 pathways.
Conclusion: The results suggest that while EGCG shows strong molecular interactions, FKB presents a more balanced therapeutic profile. These findings support FKB as a promising natural inhibitor of MAPK14, warranting further in vitro and in vivo validation for TNBC therapy.
Keywords: Triple-Negative Breast Cancer (TNBC), p38 MAPK α (MAPK14), Epigallocatechin-3-gallate (EGCG), Flavokawain B (FKB), Molecular docking
References
Akter, M. F., Islam, M. R., Manica, A. K., Siddique, M. A. B., Tufael (2022). "Structural and Pharmacological Insights into Withaferin a Binding to Mutant p53 (R248Q): Multi-Faceted Inhibitor in Cancer Treatment", Journal of Angiotherapy, 6(2),1-8,10432. https://doi.org/10.25163/angiotherapy.6210432
Amin, M. S., Rahman, A., Prapty, A. N., Numan, A. A., Rahman, M. M., Ahmed, B., Shabuj, M. M. H., Aunni, S. A. A. (2024). "Nanomedicine in Cancer Therapy: From Preclinical Promise to Clinical Applications", Journal of Precision Biosciences, 6(1),1-14,10064 https://doi.org/10.25163/biosciences.6110064
Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., Siesling, S., & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010
Baranova, A., Krasnoselskyi, M., Starikov, V., Kartashov, S., Zhulkevych, I., Vlasenko, V., Oleshko, K., Bilodid, O., Sadchikova, M., & Vinnyk, Y. (2022). Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. Journal of Medicine and Life, 15(2), 153–161. https://doi.org/10.25122/jml-2021-0108
Cetraro, P., Plaza-Diaz, J., MacKenzie, A., & Abadía-Molina, F. (2022). A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers, 14(7), 1671. https://doi.org/10.3390/cancers14071671
Chen, H., Padia, R., Li, T., Li, Y., Li, B., Jin, L., & Huang, S. (2021). Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. Npj Breast Cancer, 7(1), 91. https://doi.org/10.1038/s41523-021-00300-1
Chen, L.-C., Mokgautsi, N., Kuo, Y.-C., Wu, A. T. H., & Huang, H.-S. (2023). In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines, 11(7), 2011. https://doi.org/10.3390/biomedicines11072011
Darwish, M. I. M., Moustafa, A. M., Youssef, A. M., Mansour, M., Yousef, A. I., El Omri, A., Shawki, H. H., Mohamed, M. F., Hassaneen, H. M., Abdelhamid, I. A., & Oishi, H. (2023). Novel Tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline Chalcones Suppress Breast Carcinoma through Cell Cycle Arrests and Apoptosis. Molecules, 28(8), 3338. https://doi.org/10.3390/molecules28083338
Farghadani, R., & Naidu, R. (2021). Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer. Cancers, 13(14), 3427. https://doi.org/10.3390/cancers13143427
Ferrari, E., Bettuzzi, S., & Naponelli, V. (2022). The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review. International Journal of Molecular Sciences, 23(11), 6075. https://doi.org/10.3390/ijms23116075
Fultang, N., Chakraborty, M., & Peethambaran, B. (2021). Regulation of cancer stem cells in triple negative breast cancer. Cancer Drug Resistance. https://doi.org/10.20517/cdr.2020.106
Ganguly, P., Macleod, T., Wong, C., Harland, M., & McGonagle, D. (2023). Revisiting p38 Mitogen-Activated Protein Kinases (MAPK) in Inflammatory Arthritis: A Narrative of the Emergence of MAPK-Activated Protein Kinase Inhibitors (MK2i). Pharmaceuticals, 16(9), 1286. https://doi.org/10.3390/ph16091286
García-Hernández, L., García-Ortega, M. B., Ruiz-Alcalá, G., Carrillo, E., Marchal, J. A., & García, M. Á. (2021). The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. International Journal of Molecular Sciences, 23(1), 370. https://doi.org/10.3390/ijms23010370
Islam, M. R., Manica, A. K., Akter, M. F., Siddique, M. A. B., Tufael (2023). "In Silico Drug-Likeness and Safety Profiling of Tinosporaside: A Natural Alternative to Celecoxib for COX-2 Inhibition", Journal of Primeasia, 4(1),1-8,10434. https://doi.org/10.25163/primeasia.4110434
Kciuk, M., Alam, M., Ali, N., Rashid, S., Glowacka, P., Sundaraj, R., Celik, I., Yahya, E. B., Dubey, A., Zerroug, E., & Kontek, R. (2023). Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules, 28(13), 5246. https://doi.org/10.3390/molecules28135246
Ke, Q., Duan, K., Cheng, Y., Xu, S., Xiao, S., & Fang, L. (2023). Sanguinarine Exhibits Antiviral Activity against Porcine Reproductive and Respiratory Syndrome Virus via Multisite Inhibition Mechanisms. Viruses, 15(3), 688. https://doi.org/10.3390/v15030688
Kudaravalli, S., den Hollander, P., & Mani, S. A. (2022). Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene, 41(23), 3177–3185. https://doi.org/10.1038/s41388-022-02329-3
Liskova, A., Samec, M., Koklesova, L., Brockmueller, A., Zhai, K., Abdellatif, B., Siddiqui, M., Biringer, K., Kudela, E., Pec, M., Gadanec, L. K., Šudomová, M., Hassan, S. T. S., Zulli, A., Shakibaei, M., Giordano, F. A., Büsselberg, D., Golubnitschaja, O., & Kubatka, P. (2021). Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA Journal, 12(2), 155–176. https://doi.org/10.1007/s13167-021-00242-5
Lomas, J. S., & Rosenberg, R. E. (2023). Cooperativity and intermolecular hydrogen bonding in donor-acceptor complexes of phenol and polyhydroxybenzenes. Journal of Physical Organic Chemistry, 36(7). https://doi.org/10.1002/poc.4506
Manica, A. K., Akter, M. F., Islam, M. R., Tufael, Siddique, M. A. B. (2022). "Computational Exploration of Xanthohumol as a Safer Natural Substitute for Tamoxifen in Estrogen Receptor-Positive Breast Cancer", Journal of Angiotherapy, 6(2),1-8,10431. https://doi.org/10.25163/angiotherapy.6210431
Manica, A. K., Tufael, Siddique, M. A. B., Akter, M. F., Islam, M. R. (2023). "In Silico Repurposing of FDA-approved Drugs Targeting Keap1-NRF2 Axis in Hepatocellular Carcinoma for Precision Therapy", Journal of Precision Biosciences, 5(1),1-8,10436 https://doi.org/10.25163/biosciences.5110436
Manica, A. K., Siddique, M. A. B., Tufael, Akter, M. F., Islam, M. R. (2024). "Targeted Drug Repurposing in Precision Oncology Reveals Celecoxib as a GSK-3β Inhibitor in Hepatocellular Carcinoma", Journal of Precision Biosciences, 6(1),1-8,10440 https://doi.org/10.25163/biosciences.6110440
Manica, A. K., Islam, M. R., Siddique, M. A. B., Akter, M. F., Tufael (2024). "Tanshinone IIA as a Promising Natural Inhibitor of the STING Pathway: A Computational Exploration Toward Neuroinflammatory Therapy", Australian Herbal Insight, 7(1),1-8,10441 https://doi.org/10.25163/herbal.7110441
Maqbool, M., Bekele, F., & Fekadu, G. (2022). Treatment Strategies Against Triple-Negative Breast Cancer: An Updated Review. Breast Cancer: Targets and Therapy, Volume 14, 15–24. https://doi.org/10.2147/BCTT.S348060
Marín, V., Burgos, V., Pérez, R., Maria, D. A., Pardi, P., & Paz, C. (2023). The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment. International Journal of Molecular Sciences, 24(13), 10737. https://doi.org/10.3390/ijms241310737
Mhatre, S., Naik, S., & Patravale, V. (2021). A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine, 129, 104137. https://doi.org/10.1016/j.compbiomed.2020.104137
Michalkova, R., Kello, M., Cizmarikova, M., Bardelcikova, A., Mirossay, L., & Mojzis, J. (2023). Chalcones and Gastrointestinal Cancers: Experimental Evidence. International Journal of Molecular Sciences, 24(6), 5964. https://doi.org/10.3390/ijms24065964
Mokra, D., Joskova, M., & Mokry, J. (2022). Therapeutic Effects of Green Tea Polyphenol (?)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. International Journal of Molecular Sciences, 24(1), 340. https://doi.org/10.3390/ijms24010340
Mvondo, J. G. M., Matondo, A., Mawete, D. T., Bambi, S.-M. N., Mbala, B. M., & Lohohola, P. O. (2021). In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. International Journal of TROPICAL DISEASE & Health, 1–12. https://doi.org/10.9734/ijtdh/2021/v42i1130492
Oner, E., Al-Khafaji, K., Mezher, M. H., Demirhan, I., Suhail Wadi, J., Belge Kurutas, E., Yalin, S., & Choowongkomon, K. (2023). Investigation of berberine and its derivatives in Sars Cov-2 main protease structure by molecular docking, PROTOX-II and ADMET methods: in machine learning and in silico study. Journal of Biomolecular Structure and Dynamics, 41(19), 9366–9381. https://doi.org/10.1080/07391102.2022.2142848
Phan, T., Zhang, X. H., Rosen, S., & Melstrom, L. G. (2023). P38 kinase in gastrointestinal cancers. Cancer Gene Therapy, 30(9), 1181–1189. https://doi.org/10.1038/s41417-023-00622-1
Savaspun, K., Boonchaisri, S., Chaisuriya, P., Srisomsap, C., Svasti, J., Ardkhean, R., Phanumartwiwath, A., & Sam-ang, P. (2023). Cytotoxicity and molecular docking to DNA topoisomerase II of chalcone flavokawain B isolated from Kaempferia elegans rhizomes. ScienceAsia, 49(3), 421. https://doi.org/10.2306/scienceasia1513-1874.2023.036
Song, X., Ni, M., Zhang, Y., Zhang, G., Pan, J., & Gong, D. (2021). Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid. Food Chemistry, 349, 129172. https://doi.org/10.1016/j.foodchem.2021.129172
Szymczyk, J., Sluzalska, K., Materla, I., Opalinski, L., Otlewski, J., & Zakrzewska, M. (2021). FGF/FGFR-Dependent Molecular Mechanisms Underlying Anti-Cancer Drug Resistance. Cancers, 13(22), 5796. https://doi.org/10.3390/cancers13225796
Tolomeo, M., Cavalli, A., & Cascio, A. (2022). STAT1 and Its Crucial Role in the Control of Viral Infections. International Journal of Molecular Sciences, 23(8), 4095. https://doi.org/10.3390/ijms23084095
van Barele, M., Heemskerk-Gerritsen, B. A. M., Louwers, Y. V., Vastbinder, M. B., Martens, J. W. M., Hooning, M. J., & Jager, A. (2021). Estrogens and Progestogens in Triple Negative Breast Cancer: Do They Harm? Cancers, 13(11), 2506. https://doi.org/10.3390/cancers13112506
Wang, W., Han, D., Cai, Q., Shen, T., Dong, B., Lewis, M. T., Wang, R., Meng, Y., Zhou, W., Yi, P., Creighton, C. J., Moore, D. D., & Yang, F. (2022). MAPK4 promotes triple negative breast cancer growth and reduces tumor sensitivity to PI3K blockade. Nature Communications, 13(1), 245. https://doi.org/10.1038/s41467-021-27921-1
Whitaker, R. H., & Cook, J. G. (2021). Stress Relief Techniques: p38 MAPK Determines the Balance of Cell Cycle and Apoptosis Pathways. Biomolecules, 11(10), 1444. https://doi.org/10.3390/biom11101444
Xu, D., Peng, S., Guo, R., Yao, L., Mo, H., Li, H., Song, H., & Hu, L. (2021). EGCG Alleviates Oxidative Stress and Inhibits Aflatoxin B1 Biosynthesis via MAPK Signaling Pathway. Toxins, 13(10), 693. https://doi.org/10.3390/toxins13100693
Xu, W., Liu, R., Dai, Y., Hong, S., Dong, H., & Wang, H. (2021). The Role of p38γ in Cancer: From review to outlook. International Journal of Biological Sciences, 17(14), 4036–4046. https://doi.org/10.7150/ijbs.63537
Zhao, M., Jiang, X., Fang, J., Lin, Y., Li, Y., Pei, R., Ye, P., Lu, Y., & Jiang, L. (2023). The kava chalcone flavokawain B exerts inhibitory activity and synergizes with BCL-2 inhibition in malignant B-cell lymphoma. Phytomedicine, 120, 155074. https://doi.org/10.1016/j.phymed.2023.155074
Zheng, Q., Li, S., Wang, A., Zhe, M., Yang, P., Wu, Y., Zhao, M., Zhu, Y., Luo, Y., Wang, G., & Ouyang, L. (2023). p38 mitogen-activated protein kinase: Functions and targeted therapy in diseases. MedComm – Oncology, 2(3). https://doi.org/10.1002/mog2.53