Nanomaterial-Based Sensors for Early Detection of Alzheimer's Disease Markers
Muhit Rana 1*, Hilal Ahmad Rather 2, Mohd Arif Dar 3
Biosensors and Nanotheranostics 2(1) 1-15 https://doi.org/10.25163/biosensors.217331
Submitted: 09 November 2022 Revised: 09 March 2023 Published: 11 March 2023
Early detection of Alzheimer's disease through nanomaterial-based sensors enhances intervention, research, and patient care, promising a transformative impact on healthcare.
Abstract
Alzheimer's, a widespread form of dementia, profoundly affects millions worldwide, necessitating early detection for improved intervention and symptom management. Current diagnostic challenges stem from the disease's late-stage symptomatic presentation. Here, we explore the potential of nanomaterial-based sensors, leveraging nanoparticles, nanowires, and quantum dots, to detect specific biomarkers associated with Alzheimer's disease. These sensors offer high sensitivity and selectivity, promising a breakthrough in early diagnosis. Early detection not only enhances patient outcomes but also aids in clinical trials, research, and future planning. Through an examination of the mechanisms, advancements, and applications of these innovative sensors, our review sheds light on their pivotal role in reshaping the landscape of early Alzheimer's disease diagnosis.
Keywords: Alzheimer's disease detection, Nanomaterial-based sensors, Early diagnosis, Biomarkers Innovation
References
Ahammad, A. J. S., Lee, J., & Rahman, M. A. (2009). Electrochemical sensors based on carbon nanotubes. Sensors, 9(4), 2289–2319. https://doi.org/10.3390/s90402289.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095.
Arvanitakis, Z., & Bennett, D. A. (2019). What Is Dementia?. JAMA, 322(16), 1589-1599.
Bilal, M., Barani, M., Sabir, F., Rahdar, A., & Kyzas, G. Z. (2020). Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact, 20, 100251. https://doi.org/10.1016/j.impact.2020.100251.
Blennow, K., & Zetterberg, H. (2018). Biomarkers for Alzheimer’s disease: current status and prospects for the future. Journal of Internal Medicine, 284(6), 643–663. https://doi.org/10.1111/joim.12816.
Carneiro P, Morais S, Pereira MC. Nanomaterials towards Biosensing of Alzheimer's Disease Biomarkers. Nanomaterials (Basel). 2019 Nov 22;9(12):1663. https://doi.org/10.3390/nano9121663.
Chauhan, N., Saxena, K., Tikadar, M., & Jain, U. (2021). Recent advances in the design of biosensors based on novel nanomaterials: An insight. Nanotechnology and Precision Engineering, 4(4), 045003. https://doi.org/10.1063/10.0006524.
Chen, L., McBranch, D., Wang, H. L., Helgeson, R. C., Wudl, F., & Whitten, D. G. (1999). Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12287–12292. https://doi.org/10.1073/pnas.96.22.12287.
Chen, R., & Riviere, J. E. (2017). Biological Surface Adsorption Index of nanomaterials: Modelling surface interactions of nanomaterials with biomolecules. Advances in Experimental Medicine and Biology, 207–253. https://doi.org/10.1007/978-3-319-47754-1_8
Choi, C., Lee, Y., Cho, K. W., Koo, J. H., & Doo, G. (2018). Wearable and implantable soft bioelectronics using Two-Dimensional materials. Accounts of Chemical Research, 52(1), 73–81. https://doi.org/10.1021/acs.accounts.8b00491.
Chung, Y., Nguyen, H. A., Zhang, J., Tabassum, S., & Cao, H. (2022). Towards multiplexed and multimodal biosensor platforms in Real-Time monitoring of metabolic disorders. Sensors, 22(14), 5200. https://doi.org/10.3390/s22145200.
Da Fonseca Soares Rodrigues, P., Tierno, P. F. G. M. M., Carvalho, G., & Santos, J. E. G. D. (2023). Molecularly imprinted Polymer-Based electrochemical sensing in protein detection. Traektoriâ Nauki, 9(9), 4001–4018. https://doi.org/10.22178/pos.96-7.
Gao, F., Li, F., Wang, J., Yu, H., Li, X., Chen, H., Wang, J., Qin, D., Li, Y., Liu, S., Zhang, X., & Wang, Z.-H. (2023). SERS-Based Optical Nanobiosensors for the Detection of Alzheimer’s Disease. Biosensors, 13(9), 880.
Gillani, N., & Arslan, T. (2021). Intelligent Sensing Technologies for the Diagnosis, Monitoring and Therapy of Alzheimer’s Disease: A Systematic Review. Sensors, 21(12), 4249. https://doi.org/10.3390/s21124249.
Haes, A. J., Chang, L., Klein, W. L., & Van Duyne, R. P. (2005). Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. Journal of the American Chemical Society, 127(7), 2264–2271. https://doi.org/10.1021/ja044087q.
Hameed, A., Saif, M. J., Qayyum, M. A., Khalid, T., & Farooq, T. (2023). Nanomaterial-based sensors for real-time monitoring of crop plants growth, development, production, and protection. Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management, 357–385. https://doi.org/10.1016/b978-0-323-91933-3.00007-6.
Hampel, H., Toschi, N., Babiloni, C., Baldacci, F., Black, K. L., Bokde, A. L., Bun, R. S., Cacciola, F., Cavedo, E., Chiesa, P. A., Colliot, O., Coman, C., Dubois, B., Duggento, A., Durrleman, S., Ferretti, M., George, N., Genthon, R., Habert, M., . . . Lista, S. (2018). Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. Journal of Alzheimer’s Disease, 64(s1), S47–S105. https://doi.org/10.3233/jad-179932.
Hsu, C. L., Lin, C. L., & Chen, Y. F. (2020). Evaluation of Wearable Technology in Dementia: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 7, 501104. https://doi.org/10.3389/fmed.2020.501104
Jack, C. R. (2020). Preclinical Alzheimer’s disease: a valid concept. Lancet Neurology, 19(1) 31.https://doi.org/10.1016/s1474-4422(19)30440-5
Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W. J., Jessen, F., Karlawish, J., Liu, E., Molinuévo, J. L., Montine, T. J., Phelps, C. H., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., Silverberg, N. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018.
Karki, H. P., Jang, Y., Jung, J., & Oh, J. (2021). Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of Alzheimer’s disease. Journal of Nanobiotechnology, 19(1), 72.
Kashfia Haque, Ajeet Kaushik. (2022). Development of Wearable Biosensors for Continuous Monitoring of Neurological Biomarkers, Biosensors and Nanotheranostics, 2(1), 1-8, 217330
Katsoulis-Dimitriou, K. (2021). Real-world evidence and product development: Opportunities and challenges. Wiener klinische Wochenschrift, 133(21-22), 1007–1013. https://doi.org/10.1007/s00508-021-01851-w.
Kaur, H., & Singh, D. (2019). Designing user-friendly and cost-effective sensor platforms for healthcare applications. Journal of Electronic Commerce Research and Applications, 34, 100822. https://doi.org/10.1016/j.elerap.2019.100822 2:
Kaushik, A., Jayant, R. D., Tiwari, S., Vashist, A., & Nair, M. G. (2016). Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosensors and Bioelectronics, 80, 273–287. https://doi.org/10.1016/j.bios.2016.01.065
Kim, J., & Lee, H. (2023). Early Alzheimer’s Disease Diagnosis Using Wearable Sensors and Multilevel Gait Assessment: A Machine Learning Ensemble Approach. IEEE Sensors Journal, 23(9), 10041-10053. https://doi.org/10.1109/JSEN.2023.3259034 2
Kumar, S., & Kumar, R. (2023). Nanomaterial-Based Sensors for Healthcare Applications. Journal of Nanoscience and Nanotechnology, 23(12), 7685-7692.
Lee, J., Kim, J., Kim, S., & Min, D. (2016). Biosensors based on graphene oxide and its biomedical application. Advanced Drug Delivery Reviews, 105, 275–287. https://doi.org/10.1016/j.addr.2016.06.001.
Liu, D., Chen, W., Tian, Y., He, S., Zheng, W., Sun, J., Wang, Z., & Jiang, X. (2011). A Highly Sensitive Gold-Nanoparticle-Based Assay for Acetylcholinesterase in Cerebrospinal Fluid of Transgenic Mice with Alzheimer’s Disease. Advanced Healthcare Materials, 1(1), 90–95. https://doi.org/10.1002/adhm.201100002.
Liu, F., & Panagiotakos, D. (2022). Real-world data: a brief review of the methods, applications, challenges and opportunities. BMC Medical Research Methodology, 22(1), 287. https://doi.org/10.1186/s12874-022-01768-6 2:
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N. C., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413–446. https://doi.org/10.1016/s0140-6736(20)30367-6.
Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee, S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N. C., Gitlin, L. N., Howard, R., Kales, H. C., Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., . . . Mukadam, N. (2017). Dementia prevention, intervention, and care. The Lancet, 390(10113), 2673–2734. https://doi.org/10.1016/s0140-6736(17)31363-6
Malini, S., Roy, A., Raj, K. S., Raju, K., Ali, I. H., Mahesh, B., Yadav, K. K., Islam, S., Jeon, B., & Lee, S. S. (2022). Sensing beyond Senses: An Overview of Outstanding Strides in Architecting Nanopolymer-Enabled Sensors for Biomedical Applications. Polymers, 14(3), 601. https://doi.org/10.3390/polym14030601.
Marx, U., Andersson, T., Bahinski, A., Beilmann, M., Beken, S., Cassee, F. R., Cirit, M., Daneshian, M., Fitzpatrick, S. L., Frey, O., Gaertner, C., Giese, C., Griffith, L. G., Hartung, T., Heringa, M. B., Hoeng, J., De Jong, W. H., Kojima, H., Kuehnl, J., . . . Roth, A. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. Alternatives to Animal Experimentation. https://doi.org/10.14573/altex.1603161
Masters, C. L., Bateman, R. J., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer’s disease. Nature Reviews Disease Primers, 1(1). https://doi.org/10.1038/nrdp.2015.56.
McKeith, I. G., O′Brien, J. T., Walker, Z., Tatsch, K., Booij, J., Darcourt, J., Padovani, A., Giubbini, R., Bonuccelli, U., Volterrani, D., Holmes, C., Kemp, P. M., Tabet, N., Meyer, I., & Reininger, C. (2007). Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurology, 6(4), 305–313. https://doi.org/10.1016/s1474-4422(07)70057-1.
McKhann, G. M., Drachman, D. A., Folstein, M. F., Katzman, R., Price, D. L., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939. https://doi.org/10.1212/wnl.34.7.939.
Mehrotra, P. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153–159. https://doi.org/10.1016/j.jobcr.2015.12.002.
Moya-Alvarado, G., Gershoni-Emek, N., Perlson, E., & Bronfman, F. C. (2016). Neurodegeneration and Alzheimer’s disease (AD). What Can Proteomics Tell Us About the Alzheimer’s Brain? Molecular & Cellular Proteomics, 15(2), 409–425. https://doi.org/10.1074/mcp.r115.053330.
Mu, B., Zhang, J., McNicholas, T. P., Reuel, N. F., Kruss, S., & Strano, M. S. (2014). Recent advances in molecular recognition based on nanoengineered platforms. Accounts of Chemical Research, 47(4), 979–988. https://doi.org/10.1021/ar400162w.
Müller, K., Fröhlich, S., Germano, A. M. C., Kondragunta, J., Agoitia Hurtado, M. F. D. C., Rudisch, J., Schmidt, D., Hirtz, G., Stollmann, P., & Voelcker-Rehage, C. (2020). Sensor-based systems for early detection of dementia (SENDA): a study protocol for a prospective cohort sequential study. BMC Neurology, 20(1), 84. https://doi.org/10.1186/s12883-020-01666-8.
Murti, B. T., Putri, A. D., Huang, Y.-J., Wei, S.-M., Peng, C.-W., & Yang, P.-K. (2021). Clinically oriented Alzheimer’s biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Advances, 11(33), 20207-20223
Nguyen, C. K., Trân, N. Q., Nguyen, T. P., & Nguyen, D. H. (2017). Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(1), 015001. https://doi.org/10.1088/2043-6254/8/1/015001.
Oh, J., Yoo, G., Chang, Y. W., Kim, H. J., Jose, J., Kim, E., Pyun, J. C., & Yoo, K. H. (2013). A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosensors and Bioelectronics, 50, 345–350. https://doi.org/10.1016/j.bios.2013.07.004.
Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. Essays in Biochemistry, 60(1), 81–90. https://doi.org/10.1042/ebc20150009.
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Del Pilar Rodríguez-Torres, M., Acosta-Torres, L. S., Di´az-Torres, L., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1). https://doi.org/10.1186/s12951-018-0392-8.
Pei, X. M., Yeung, M. H. Y., Wong, A. N. N., Tsang, H. F., Yu, A. C. S., Yim, A. K. Y., & Wong, S. C. C. (2023). Targeted sequencing approach and its clinical applications for the molecular diagnosis of human diseases. Cells, 12(3), 493. https://doi.org/10.3390/cells12030493
Perneczky R. (2019). Dementia treatment versus prevention. Therapeutic advances in neurological disorders, 12, 1756286419843046. [^10^]
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., & Gogotsi, Y. (2019). Energy storage: The future enabled by nanomaterials. Science, 366(6468). https://doi.org/10.1126/science.aan8285.
Prince, M., Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., & Prina, M. (2015). World Alzheimer Report 2015: The Global Impact of Dementia. Alzheimer's Disease International.
Prosa, M., Bolognesi, M., Fornasari, L., Grasso, G., Lopez-Sanchez, L., Marabelli, F., & Toffanin, S. (2020). Nanostructured Organic/Hybrid materials and components in miniaturized optical and chemical sensors. Nanomaterials, 10(3), 480. https://doi.org/10.3390/nano10030480
Rakesh, G., Szabo, S. T., Alexopoulos, G. S., & Zannas, A. S. (2017). Strategies for dementia prevention: latest evidence and implications. Therapeutic advances in chronic disease, 8(8-9), 121-136.
Raymond, S. B., Treat, L. H., Dewey, J. D., McDannold, N., Hynynen, K., & Bacskai, B. J. (2008). Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLOS ONE, 3(5), e2175. https://doi.org/10.1371/journal.pone.0002175.
Rostamzadeh, A., Kahlert, A., Kalthegener, F. et al. (2022). Psychotherapeutic interventions in individuals at risk for Alzheimer’s dementia: a systematic review. Alzheimer’s Research & Therapy, 14(1), 18. https://doi.org/10.1186/s13195-021-00956-8
Scarpa, E., Cascione, M., Griego, A., Pellegrino, P., Moschetti, G., & De Matteis, V. (2023). Gold and silver nanoparticles in Alzheimer’s and Parkinson’s diagnostics and treatments. Ibrain, 9(3), 298–315. https://doi.org/10.1002/ibra.12126
Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210.
Senapati, S., Secchi, V., Cova, F., Richman, M., Villa, I., Yehuda, R., Shenberger, Y., Campione, M., Rahimipour, S., & Monguzzi, A. (2023). Non-Invasive Treatment of Alzheimer’s Disease with Scintillating Nanotubes. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202301527.
Sperling, R. A., Aisen, P. S., Beckett, R., Bennett, D. A., Braswell, R. H., Yeo, G. S., ... & Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210.
Stavropoulos, T. G., Lazarou, I., Diaz, A., Gove, D., Georges, J., Manyakov, N. V., Pich, E. M., Hinds, C., Tsolaki, M., Nikolopoulos, S., & Kompatsiaris, I. (2021). Wearable Devices for Assessing Function in Alzheimer’s Disease: A European Public Involvement Activity About the Features and Preferences of Patients and Caregivers. Frontiers in Aging Neuroscience, 13, 643135. https://doi.org/10.3389/fnagi.2021.643135 1
Sukhawathanakul, P., Crizzle, A., Tuokko, H., Naglie, G., & Rapoport, M. J. (2021). Psychotherapeutic Interventions for Dementia: a Systematic Review. Canadian geriatrics journal : CGJ, 24(3), 222–236.
Tang, M., Pi, J., Long, Y., Huang, N., Yuan, C., & Zheng, H. (2018). Quantum dots-based sandwich immunoassay for sensitive detection of Alzheimer’s disease-related Aβ1–42. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 201, 82–87. https://doi.org/10.1016/j.saa.2018.04.060.
Wang, F., Banerjee, D., Liu, Y., Chen, X., & Liu, X. (2010). Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 135(8), 1839. https://doi.org/10.1039/c0an00144a
Wang, J., Li, Y., Liu, Y., & Zhang, Y. (2019). Investigation of nanomaterial-based sensors for monitoring disease progression and treatment response. IEEE Nanotechnology Magazine, 13(5), 4-14. doi: 10.1109/MNANO.2019.2927774.
Wang, Y., & Wang, Y. (2022). IoT-Based Wearable Devices for Patients Suffering from Alzheimer Disease. Computational and Mathematical Methods in Medicine, 2022, 3224939. https://doi.org/10.1155/2022/3224939 2
Wang, Y., Zhang, Y., & Li, Y. (2021). Nanomaterial-based biosensors for Alzheimer’s disease detection. Journal of Materials Chemistry B, 9(22), 4468-4483. https://doi.org/10.1039/d1tb00214a.
Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W. J., Morris, J. C., Petersen, R. C., Saykin, A. J., Shaw, L. M., Toga, A. W., & Trojanowski, J. Q. (2017). Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimer’s & Dementia, 13(4). https://doi.org/10.1016/j.jalz.2016.11.007.
West, J. L., & Halas, N. J. (2003). Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering, 5(1), 285–292. https://doi.org/10.1146/annurev.bioeng.5.011303.120723.
Zeng, J., Wu, J., Li, M., & Wang, P. (2018). A novel magnetic nanoparticle for early detection of amyloid plaques in Alzheimer’s disease. Archives of Medical Research, 49(4), 282–285. https://doi.org/10.1016/j.arcmed.2018.09.005.
Zeng, S., Baillargeat, D., Ho, H., & Yong, K. (2014). Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews, 43(10), 3426. https://doi.org/10.1039/c3cs60479a
Zhang, Y., Wang, Y., & Li, Y. (2021). Nanomaterial-based biosensors for Alzheimer’s disease detection. Journal of Materials Chemistry B, 9(22), 4468-4483. https://doi.org/10.1039/d1tb00214a
Zhang, Y., Wang, Y., Li, X., & Wang, J. (2019). Nanomaterial-based biosensors for Alzheimer’s disease detection: Recent advances and future prospects. Biosensors and Bioelectronics, 141, 111444.
View Dimensions
View Altmetric
Save
Citation
View
Share