References
Alghofaili, Y., Albattah, A., & Rassam, M. A. (2020). A financial fraud detection model based on LSTM deep learning technique. Journal of Applied Security Research, 15(4), 498–516. https://doi.org/10.1080/19361610.2020.1815491
Azar, A. T., Shehab, E., Mattar, A. M., Hameed, I. A., & Elsaid, S. A. (2023). Deep learning based hybrid intrusion detection systems to protect satellite networks. Journal of Network and Systems Management, 31(4). https://doi.org/10.1007/s10922-023-09767-8
Bakhshi, T., & Ghita, B. (2021). Anomaly detection in encrypted internet traffic using hybrid deep learning. Security and Communication Networks, 2021, 1–16. https://doi.org/10.1155/2021/5363750
Bao, F., Wu, Y., Li, Z., Li, Y., Liu, L., & Chen, G. (2020). Effect improved for High-Dimensional and Unbalanced Data Anomaly Detection Model based on KNN-SMOTE-LSTM. Complexity, 2020, 1–17. https://doi.org/10.1155/2020/9084704
Benchaji, I., Douzi, S., Ouahidi, B. E., & Jaafari, J. (2021). Enhanced credit card fraud detection based on attention mechanism and LSTM deep model. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00541-8
Beniwal, M., Singh, A., & Kumar, N. (2023). Forecasting long-term stock prices of global indices: A forward-validating Genetic Algorithm optimization approach for Support Vector Regression. Applied Soft Computing, 145, 110566. https://doi.org/10.1016/j.asoc.2023.110566
Bogaerts, T., Masegosa, A. D., Angarita-Zapata, J. S., Onieva, E., & Hellinckx, P. (2020). A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation Research Part C Emerging Technologies, 112, 62–77. https://doi.org/10.1016/j.trc.2020.01.010
Cascone, L., Sadiq, S., Ullah, S., Mirjalili, S., Siddiqui, H. U. R., & Umer, M. (2022). Predicting Household Electric Power Consumption Using Multi-step Time Series with Convolutional LSTM. Big Data Research, 31, 100360. https://doi.org/10.1016/j.bdr.2022.100360
Chakraborty, S. K., Chandel, N. S., Jat, D., Tiwari, M. K., Rajwade, Y. A., & Subeesh, A. (2022). Deep learning approaches and interventions for futuristic engineering in agriculture. Neural Computing and Applications, 34(23), 20539–20573. https://doi.org/10.1007/s00521-022-07744-x
Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions – A review. Concurrency and Computation Practice and Experience, 35(22). https://doi.org/10.1002/cpe.7724
Dua, N., Singh, S. N., Semwal, V. B., & Challa, S. K. (2022). Inception inspired CNN-GRU hybrid network for human activity recognition. Multimedia Tools and Applications, 82(4), 5369–5403. https://doi.org/10.1007/s11042-021-11885-x
Goel, A., Goel, A. K., & Kumar, A. (2022). The role of artificial neural network and machine learning in utilizing spatial information. Spatial Information Research, 31(3), 275–285. https://doi.org/10.1007/s41324-022-00494-x
Gupta, S. (2021). Deep learning based human activity recognition (HAR) using wearable sensor data. International Journal of Information Management Data Insights, 1(2), 100046. https://doi.org/10.1016/j.jjimei.2021.100046
Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2022). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929–5021. https://doi.org/10.1007/s10462-022-10286-2
Hu, W., Wang, X., Tan, K., & Cai, Y. (2023). Digital twin-enhanced predictive maintenance for indoor climate: A parallel LSTM-autoencoder failure prediction approach. Energy and Buildings, 301, 113738. https://doi.org/10.1016/j.enbuild.2023.113738
Karpoff, J. M. (2020). The future of financial fraud. Journal of Corporate Finance, 66, 101694. https://doi.org/10.1016/j.jcorpfin.2020.101694
Lu, B., Xu, D., & Huang, B. (2021). Deep-learning-based anomaly detection for lace defect inspection employing videos in production line. Advanced Engineering Informatics, 51, 101471. https://doi.org/10.1016/j.aei.2021.101471
Mobtahej, P., Zhang, X., Hamidi, M., & Zhang, J. (2022). An LSTM-Autoencoder architecture for anomaly detection applied on compressors audio data. Computational and Mathematical Methods, 2022, 1–22. https://doi.org/10.1155/2022/3622426
Panjapornpon, C., Bardeeniz, S., Hussain, M. A., & Chomchai, P. (2022). Explainable deep transfer learning for energy efficiency prediction based on uncertainty detection and identification. Energy and AI, 12, 100224. https://doi.org/10.1016/j.egyai.2022.100224
Pocher, N., Zichichi, M., Merizzi, F., Shafiq, M. Z., & Ferretti, S. (2023). Detecting anomalous cryptocurrency transactions: An AML/CFT application of machine learning-based forensics. Electronic Markets, 33(1). https://doi.org/10.1007/s12525-023-00654-3
Rasheed, M. U., & Mahmood, S. A. (2023). A framework base on deep neural network (DNN) for land use land cover (LULC) and rice crop classification without using survey data. Climate Dynamics, 61(11–12), 5629–5652. https://doi.org/10.1007/s00382-023-06874-9
Remeikiene, R., & Gaspareniene, L. (2023). Effects of economic and financial crime on the government budget and the quality of public services. In Contributions to finance and accounting (pp. 173–204). https://doi.org/10.1007/978-3-031-34082-6_8
Selvarajan, S., Srivastava, G., Khadidos, A. O., Khadidos, A. O., Baza, M., Alshehri, A., & Lin, J. C. (2023). An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems. Journal of Cloud Computing Advances Systems and Applications, 12(1). https://doi.org/10.1186/s13677-023-00412-y
Thakkar, A., & Lohiya, R. (2021). A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Artificial Intelligence Review, 55(1), 453–563. https://doi.org/10.1007/s10462-021-10037-9
Ullah, W., Ullah, A., Haq, I. U., Muhammad, K., Sajjad, M., & Baik, S. W. (2020). CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks. Multimedia Tools and Applications, 80(11), 16979–16995. https://doi.org/10.1007/s11042-020-09406-3
Xu, H., Sun, Z., Cao, Y., & Bilal, H. (2023). A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things. Soft Computing, 27(19), 14469–14481. https://doi.org/10.1007/s00500-023-09037-4
Xuan, C. D., & Dao, M. H. (2021). A novel approach for APT attack detection based on combined deep learning model. Neural Computing and Applications, 33(20), 13251–13264. https://doi.org/10.1007/s00521-021-05952-5
Zarpala, L., & Casino, F. (2021). A blockchain-based forensic model for financial crime investigation: the embezzlement scenario. Digital Finance, 3(3–4), 301–332. https://doi.org/10.1007/s42521-021-00035-5
Zhang, F., & Wen, N. (2022). Carbon price forecasting: a novel deep learning approach. Environmental Science and Pollution Research, 29(36), 54782–54795. https://doi.org/10.1007/s11356-022-19713-x
Zonta, T., Da Costa, C. A., Zeiser, F. A., De Oliveira Ramos, G., Kunst, R., & Da Rosa Righi, R. (2022). A predictive maintenance model for optimizing production schedule using deep neural networks. Journal of Manufacturing Systems, 62, 450–462. https://doi.org/10.1016/j.jmsy.2021.12.013