References
Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, E., ... & Terauchi, R. (2019). Genome sequencing reveals agronomically important loci in rice using CRISPR/Cas9 genome editing. Nature Biotechnology, 37(12), 1333-1340.
Aibara, I., & Miwa, K. (2014). Strategies for Optimization of Mineral Nutrient Transport in Plants: Multilevel Regulation of Nutrient-Dependent Dynamics of Root Architecture and Transporter Activity. Plant and Cell Physiology, 55(12), 2027–2036. https://doi.org/10.1093/pcp/pcu156
ALONI, R., ALONI, E., LANGHANS, M., & ULLRICH, C. I. (2006). Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism. Annals of Botany, 97(5), 883–893. https://doi.org/10.1093/aob/mcl027
Amer, K., Soliman, N. A., Sameh Soror, Gad, Y. Z., Moustafa, A., Elmonem, M. A., Amer, M., Ragheb, A., Kotb, A., Taha, T., Ali, W., Sakr, M., & Ghaffar, K. A. (2024). Egypt Genome: Towards an African new genomic era. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2024.06.003
Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1), 52-61.
Asaye Demelash Limenie. (2024). Advancement of genetic engineering applications for enhancing legume crop improvement in agriculture. Cogent Food & Agriculture, 11(1). https://doi.org/10.1080/23311932.2024.2446652
Atkinson, J. A., Pound, M. P., Bennett, M. J., & Wells, D. M. (2019). Uncovering the hidden half of plants using new advances in root phenotyping. Current Opinion in Biotechnology, 55, 1-8.
Aziz, D., Rafiq, S., Saini, P., Ahad, I., Basanagouda Gonal, Rehman, S. A., Rashid, S., Saini, P., Gulab Khan Rohela, Khursheed Aalum, Singh, G., Gnanesh, B. N., & Iliya, M. N. (2025). Remote sensing and artificial intelligence: revolutionizing pest management in agriculture. Frontiers in Sustainable Food Systems, 9. https://doi.org/10.3389/fsufs.2025.1551460
Bardgett, R. D., & Wardle, D. A. (2010). Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change. Oxford University Press.
Biswal, A. K., Ozias-Akins, P., & Holbrook, C. C. (2024). Recent Technological Advancements for Identifying and Exploiting Novel Sources of Pest and Disease Resistance for Peanut Improvement. Agronomy, 14(12), 3071. https://doi.org/10.3390/agronomy14123071
Biswas, A., Kumari, A., D.S. Gaikwad, & Pandey, D. K. (2023). Revolutionizing Biological Science: The Synergy of Genomics in Health, Bioinformatics, Agriculture, and Artificial Intelligence. Omics, 27(12), 550–569. https://doi.org/10.1089/omi.2023.0197
BOLO, P. O. (2019). EFFECTS OF LONGTERM APPLICATION OF ORGANIC RESIDUES AND INORGANIC FERTILISERS ON SOIL MICROBIAL BIOMASS, DIVERSITY AND ACTIVITIES IN NYABEDA, SIAYA COUNTY, KENYA (Doctoral dissertation, SCHOOL OF ENVIRONMENTAL STUDIES, KENYATTA UNIVERSITY).
Chen, L., & Liao, H. (2017). Engineering crop nutrient efficiency for sustainable agriculture. Journal of Integrative Plant Biology, 59(10), 710–735. https://doi.org/10.1111/jipb.12559
Coleman, M. D., Iversen, C. M., & Norby, R. J. (2021). Root traits and soil carbon sequestration: Mechanistic insights from genomic approaches. Plant and Soil, 468(1-2), 23-38.
Cong, W. F., van Ruijven, J., Mommer, L., De Deyn, G. B., Berendse, F., & Hoffland, E. (2015). Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 103(1), 164-174.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988-995.
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., & de Los Campos, G. (2017). Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22(11), 961-975.
Dorlodot, S., Forster, B., Pagès, L., Price, A., Tuberosa, R., & Draye, X. (2007). Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12(10), 474-481.
Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10), 573-581.
Fageria, N. K. (2012). Role of organic soil matter in maintaining sustainability of cropping systems. Communications in soil science and plant analysis, 43(16), 2063-2113.
Germida, J. J., Chen, W., Rennie, R. J., & Walley, F. L. (2016). Soil microbial communities and carbon sequestration in agroecosystems. Canadian Journal of Soil Science, 96(3), 305-316.
Gill, R. A., & Burke, I. C. (2002). Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant and Soil, 241(2), 233-242.
Guo, L. B., & Gifford, R. M. (2010). Soil carbon stocks and land use change: A meta-analysis. Global Change Biology, 8(4), 345-360.
Henry, C., John, S., & Taylor, J. (2021). Advances in root system engineering for carbon sequestration. Trends in Plant Science, 26(9), 843-856. Kell, D. B. (2011). Breeding crop plants with deep roots: Their role in sustainable carbon sequestration. Annals of Botany, 108(3), 407-418.
Hickey, J. M., Chiurugwi, T., Mackay, I., Powell, W., Eggen, A., & Gorjanc, G. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 49(9), 1297-1303.
Hossain, M. B. (2021). Glomalin and contribution of glomalin to carbon sequestration in soil: a review. Turkish Journal of Agriculture-Food Science and Technology, 9(1), 191-196.
Huang, K., Wang, D., Duan, P., Zhang, B., & Li, Y. (2019). Genetic regulation of root system architecture and biomass accumulation in plants. Plant Physiology and Biochemistry, 141, 30-38.
Huang, X.-F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q., & Vivanco, J. M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92(4), 267–275. https://doi.org/10.1139/cjb-2013-0225
Hussain, A., Ding, X., Alariqi, M., Manghwar, H., Hui, F., Li, Y., Cheng, J., Wu, C., Cao, J., & Jin, S. (2021). Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. Plants, 10(4), 621. https://doi.org/10.3390/plants10040621
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48(1), 419-445.
Jarvensivu, T., & Rajala, R. (2013). To Produce, Co-produce, Enable or Co-enable? The Art of Balancing Managerial Action in Inter-Organizational Networks. International Journal of Business Administration, 4(1). https://doi.org/10.5430/ijba.v4n1p1
Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil, 321(1-2), 5-33.
Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface.
Kästner, M., Miltner, A., Thiele-Bruhn, S., & Liang, C. (2021). Microbial necromass in soils—linking microbes to soil processes and carbon turnover. Frontiers in Environmental Science, 9, 756378.
Kell, D. B. (2011). Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient, and water sequestration. Annals of Botany, 108(3), 407–418.
Kell, D. B. (2012). Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: Why and how. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1595), 1589-1597
Kumar, V., Singh, A., & Sharma, R. (2020). Genomic-assisted breeding for improving root traits and biomass accumulation in crops. Frontiers in Plant Science, 11, 1034.
Kuzyakov, Y., & Domanski, G. (2000). Carbon input by plants into the soil. Review of Methods, 32(6), 413-417.
Lal, R. (2020). Soil organic matter and carbon sequestration in relation to climate change and food security. Carbon Management, 11(1), 1-12.
Lavenus, J., Goh, T., Roberts, I., Guyomarc’h, S., Lucas, M., De Smet, I., ... & Laplaze, L. (2013). Lateral root development in Arabidopsis: Fifty shades of auxin. Trends in Plant Science, 18(8), 450-458.
Li, K., Lin, H., Han, M., & Yang, L. (2024). Soil metagenomics reveals the effect of nitrogen on soil microbial communities and nitrogen-cycle functional genes in the rhizosphere of Panax ginseng. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1411073
Li, P., Wang, Y., Qian, Q., Fu, Z., Wang, M., & Zeng, D. (2022). Genetic mechanisms of root development in rice. The Plant Journal, 109(5), 1095-1110.
Li, S., Muneer Ahmed Khoso, Xu, H., Zhang, C., Liu, Z., Sindho Wagan, Khuzin Dinislam, & Liu, L. (2024). WRKY Transcription Factors (TFs) as Key Regulators of Plant Resilience to Environmental Stresses: Current Perspective. Agronomy, 14(10), 2421–2421. https://doi.org/10.3390/agronomy14102421
Li, X., Wang, J., & Zhang, Y. (2022). CRISPR-based root trait modification for carbon sequestration. Plant Biotechnology Journal, 20(2), 157-171.
Liang, Y. L., Yan, P. S., Li, W. X., Ding, W. N., Li, G. X., Xu, J. M., Ding, Z. J., & Zheng, S. J. (2025). Bridging Genomic Insights to Agricultural Practice: GWAS Applications in Mining Nutrient Utilization Efficiency Genes for Crop Improvement. Plant, Cell & Environment. https://doi.org/10.1111/pce.70027
Lobet, G., Draye, X., & Péret, B. (2017). Computational modeling in plant biology: How to reconstruct and explore the hidden half of plants? Frontiers in Plant Science, 8, 1313.
Loudet, O., Gaudon, V., Trubuil, A., & Daniel-Vedele, F. (2005). Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theoretical and Applied Genetics, 110(4), 742–753. https://doi.org/10.1007/s00122-004-1900-9
Lynch, J. P. (2019). Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology, 156(3), 1041-1049.
Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges in root architecture phenotyping: The future of crop breeding. Plant Physiology, 168(2), 511-521.
Lynch, J., Marschner, P., & Rengel, Z. (2012). Effect of Internal and External Factors on Root Growth and Development. Marschner’s Mineral Nutrition of Higher Plants, 331–346. https://doi.org/10.1016/b978-0-12-384905-2.00013-3
Macnaghten, P., & Habets, M. G. J. L. (2020). Breaking the impasse: Towards a forward-looking governance framework for gene editing with plants. PLANTS, PEOPLE, PLANET. https://doi.org/10.1002/ppp3.10107
Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants, 9(1), 97. https://doi.org/10.3390/plants9010097
Miao, C., Xiao, L., Hua, K., Zou, C., Zhao, Y., & Bressan, R. A. (2018). Mutations in a subfamily of ABA receptor genes decrease ABA sensitivity and promote rice growth and productivity. Proceedings of the National Academy of Sciences, 115(23), 6418-6423.
Michels, V., Chou, C., Weigand, M., Wu, Y., & Kemna, A. (2024). Quantitative phenotyping of crop roots with spectral electrical impedance tomography: A rhizotron study with optimized measurement design. Plant Methods, 20(1), 118. https://doi.org/10.1186/s13007-024-01247-7
Milner, M. J., Howells, R. M., Craze, M., Bowden, S., Graham, N., & Wallington, E. J. (2018). A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat. BMC Plant Biology, 18(1), 115. https://doi.org/10.1186/s12870-018-1331-4
Oburger, E., & Jones, D. L. (2018). Root exudate components shaping rhizosphere microbial communities. Trends in Microbiology, 26(5), 426-438. Roy, S., Liu, W., & Nandety, R. S. (2021). Nodulation signaling and its impact on soil carbon sequestration. Molecular Plant, 14(7), 1067-1080. Zhang, H., Zhao, X., & Li, Y. (2020). Role of MYB and WRKY transcription factors in root development and carbon sequestration. Journal of Experimental Botany, 71(3), 935-947.
Osugi, A., Kojima, M., Takebayashi, Y., Ueda, N., Kiba, T., & Sakakibara, H. (2017). Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots and roots. The Plant Cell, 29(6), 1508-1523.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2019). Climate-smart soils. Nature, 532(7597), 49-57.
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2019). Biomass allocation to leaves, stems, and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30-50.
Rasheed, H., Shi, L., Winarsih, C., Jakada, B. H., Chai, R., & Huang, H. (2024). Plant Growth Regulators: An Overview of WOX Gene Family. Plants (Basel, Switzerland), 13(21), 3108. https://doi.org/10.3390/plants13213108
Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forests. Nature, 414(6865), 175-178.
Rodriguez, M., Scintu, A., Posadinu, C. M., Xu, Y., Nguyen, C. V., Sun, H., Bitocchi, E., Bellucci, E., Papa, R., Fei, Z., Giovannoni, J. J., Rau, D., & Attene, G. (2020). GWAS Based on RNA-Seq SNPs and High-Throughput Phenotyping Combined with Climatic Data Highlights the Reservoir of Valuable Genetic Diversity in Regional Tomato Landraces. Genes, 11(11), 1387. https://doi.org/10.3390/genes11111387
Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72(3), 311-328.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.
Shimotohno, A., Heidstra, R., Blilou, I., & Scheres, B. (2018). Root stem cells and their regulators: Key factors in balancing growth and response to stress. Development, 145(7), dev163717.
Singer, S. D., & Michaud, D. (2025). The current regulatory status of biotechnologically bred crops in Canada and beyond. Genome, 68, 1–13. https://doi.org/10.1139/gen-2025-0008
Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., Ganguly, S., Aziz, R., Bhatia, M., Majgaonkar, A., Seal, S., Das, M., Banerjee, S., Chowdhury, S., Adeyemi, S. B., & Chen, J.-T. (2023). Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes, 14(7), 1484. https://doi.org/10.3390/genes14071484
Slovak, R., Ogura, T., Satbhai, S. B., Ristova, D., & Busch, W. (2015). Genetic control of root growth: from genes to networks. Annals of Botany, 117(1), 9–24. https://doi.org/10.1093/aob/mcv160
Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., ... & Pett-Ridge, J. (2022). Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20(7), 415-430.
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011
Srivastava, A., & Maity, R. (2023). Assessing the Potential of AI–ML in Urban Climate Change Adaptation and Sustainable Development. Sustainability, 15(23), 16461. https://doi.org/10.3390/su152316461
Srivastava, R. K., & Yetgin, A. (2024). An overall review on influence of root architecture on soil carbon sequestration potential. Theoretical and Experimental Plant Physiology, 36(2), 165-178.
Stuthman, D. D., Leonard, K. J., & Miller-Garvin, J. (2007). Breeding Crops for Durable Resistance to Disease (Vol. 95, pp. 319–367). Academic Press. https://doi.org/10.1016/S0065-2113(07)95004-X
Sulpice, R., Trenkamp, S., Steinfath, M., Usadel, B., Gibon, Y., Witucka-Wall, H., & Stitt, M. (2014). Target of rapamycin (TOR) inhibits growth in Arabidopsis when sugars are scarce. Proceedings of the National Academy of Sciences, 111(30), 11853-11858.
Sun, Y., Wang, X., Wang, N., Zhu, X., Wu, D., & Jiang, H. (2014). Genetic improvement of nitrogen use efficiency in rice: Recent progress and future perspectives. Theoretical and Applied Genetics, 127(8), 1431-1445.
Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822
Udvardi, M., & Poole, P. S. (2013). Transport and Metabolism in Legume-Rhizobia Symbioses. Annual Review of Plant Biology, 64(1), 781–805. https://doi.org/10.1146/annurev-arplant-050312-120235
Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485–2494. https://doi.org/10.1093/jxb/erq429
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Iwata, H., Hara, N., ... & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097-1102.
Varshney, R. K., Pandey, M. K., & Bohra, A. (2019). Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theoretical and Applied Genetics, 132(3), 797-816.
Wang, C., Song, S., Fu, J., Wang, K., Chen, X., Bo, B., Chen, Z., Zhang, L., Zhang, L., Wang, X., Tang, N., Tian, X., Chen, L., Luan, S., Yang, Y., & Mao, D. (2025). The transcription factor OsNAC25 regulates potassium homeostasis in rice. Plant Biotechnology Journal, 23(3), 930–945. https://doi.org/10.1111/pbi.14550
Wang, W., Pan, Q., He, F., Akhunova, A., Chao, S., Trick, H., & Akhunov, E. (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. The CRISPR Journal, 1(1), 65-74.
Wang, Y., Hu, N., Liu, Z., Wu, G., & Liu, Q. (2021). Advances in transcriptomics and metabolomics for crop root research. Current Opinion in Biotechnology, 70, 72-79.
Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609.
Wilkes, J. (2022). Reconnecting with Nature through Good Governance: Inclusive Policy across Scales. Agriculture, 12(3), 382. https://doi.org/10.3390/agriculture12030382
Wolabu, T. W., Mahmood, K., Chen, F., Torres-Jerez, I., Udvardi, M., Tadege, M., Cong, L., Wang, Z., & Wen, J. (2024). Mutating alfalfa COUMARATE 3-HYDROXYLASE using multiplex CRISPR/Cas9 leads to reduced lignin deposition and improved forage quality. Frontiers in Plant Science, 15, 1363182. https://doi.org/10.3389/fpls.2024.1363182
Xie, Y., Straub, D., Eguen, T., Brandt, R., Stahl, M., Martinez-Garcia, J. F., & Palme, K. (2021). The auxin signaling repressor IAA8 promotes PIN1 polarity and vascular patterning in Arabidopsis roots. The Plant Cell, 33(6), 1831-1845.
Xu, H., Liu, P., Wang, C., Wu, S., Dong, C., Lin, Q., Sun, W., Huang, B., Xu, M., Tauqeer, A., & Wu, S. (2022). Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. Plant Physiology, 190(2), 1165–1181. https://doi.org/10.1093/plphys/kiac298
Zhang, X., Li, L., Li, D., Sun, Y., Zhang, R., & Wang, W. (2022). Functional characterization of OsMYB30 as a key regulator of root growth and drought response in rice. Plant Science, 315, 111122.
Zhao, K., & Bartley, L. E. (2014). MYB transcription factors in plant secondary metabolism. Current Opinion in Plant Biology, 19, 1-7.
Zhao, Q., Gallego-Giraldo, L., Wang, H., Zeng, Y., Ding, S. Y., Chen, F., & Dixon, R. A. (2018). Carbohydrate-metabolism-related genes are crucial for lignin biosynthesis and carbon allocation. The Plant Journal, 94(5), 931-944.
Zhong, R., & Ye, Z. H. (2012). MYB46 and MYB83 function as transcriptional activators in secondary cell wall biosynthesis in Arabidopsis. The Plant Cell, 24(1), 412-429.