Microbial Bioactives | Online ISSN 2209-2161
REVIEWS   (Open Access)

Antibiotic Resistance at the Human–Animal–Environment Crossroads: A Systematic Review of the Silent Global Pandemic

Sabiha Nusrat1*, Helal Murshed2, Sadia Afrin3

+ Author Affiliations

Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110426

Submitted: 31 August 2025 Revised: 10 November 2025  Published: 18 November 2025 


Abstract

Antibiotic resistance (AMR) has evolved into one of the most pressing global health challenges, silently threatening human and animal well-being while destabilizing ecological balance. This systematic review synthesizes current evidence from clinical, agricultural, and environmental research to trace how misuse and overreliance on antibiotics—particularly in livestock production—drive the emergence and dissemination of resistant pathogens. Nearly 70% of global antibiotic use occurs in livestock, not only to treat infections but also to promote growth, unintentionally cultivating resistant bacterial strains. In poultry, cattle, and swine farming, the unregulated use of antimicrobials has accelerated the evolution of multidrug-resistant (MDR) organisms. Data reveal alarming contamination levels, with European poultry meat showing approximately 40% prevalence of Extended-spectrum β-lactamase (ESBL)-producing E. coli and 15–20% of pig and poultry isolates in parts of Asia harboring colistin resistance genes. Human exposure to these pathogens occurs through direct contact, consumption of contaminated animal products, and environmental reservoirs. This tri-sectoral transmission underscores the deep interconnection between human health, animal health, and the environment—an embodiment of the One Health concept. The review calls for immediate and coordinated global responses, emphasizing sustainable agricultural practices, reduced antibiotic misuse, and strengthened surveillance systems. Combating this “silent pandemic” requires unified policies bridging global health and agriculture to safeguard future generations.

Keywords: Antibiotic resistance, One Health, antimicrobial misuse, livestock farming, global health crisis

References


Aarestrup, F. M., Wegener, H. C., & Collignon, P. (2008). Resistance in bacteria of the food chain: Epidemiology and control strategies. Expert Review of Anti-Infective Therapy, 6(5), 733–750. https://doi.org/10.1586/14787210.6.5.733

Alabi, E. D., Rabiu, A. G., & Adesoji, A. T. (2025). A review of antimicrobial resistance challenges in Nigeria: The need for a One Health approach. One Health, 20, 101053. https://doi.org/10.1016/j.onehlt.2025.101053

Almansour, A. M., Alhadlaq, M. A., Alzahrani, K. O., Mukhtar, L. E., Alharbi, A. L., & Alajel, S. M. (2023). The silent threat: Antimicrobial-resistant pathogens in food-producing animals and their impact on public health. Microorganisms, 11(9), 2127. https://doi.org/10.3390/microorganisms11092127

Alotaibi, A. S. (2023). Antibiotic resistance genes (ARGs) in the environment of Saudi aquaculture as a new class of pollutants. Aquaculture Research, 2023, 1–20. https://doi.org/10.1155/2023/6761331

Anyanwu, M. U., Jaja, I. F., Okpala, C. O. R., Njoga, E. O., Okafor, N. A., & Oguttu, J. W. (2023). Mobile colistin resistance (mcr) gene-containing organisms in poultry sector in low- and middle-income countries: Epidemiology, characteristics, and One Health control strategies. Antibiotics, 12(7), 1117. https://doi.org/10.3390/antibiotics12071117

Buelow, E., Ploy, M., & Dagot, C. (2021). Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Current Opinion in Microbiology, 64, 117–124. https://doi.org/10.1016/j.mib.2021.10.005

Chopjitt, P., Boueroy, P., Morita, M., Iida, T., Akeda, Y., Hamada, S., & Kerdsin, A. (2024). Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant genes isolated from food animals in the food supply chain. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1289134

Da Silva, R. A., Arenas, N. E., Luiza, V. L., Bermudez, J. A. Z., & Clarke, S. E. (2023). Regulations on the use of antibiotics in livestock production in South America: A comparative literature analysis. Antibiotics, 12(8), 1303. https://doi.org/10.3390/antibiotics12081303

De Barcelona Departament De Farmacologia De Terapèutica I De Toxicologia, U. A., True, M. A. A., Mercedes, C. G. M., & Carles, C. I. A. (2019, November 19). Monitoring of sales of antimicrobials for animal use in the EU/EEA and Switzerland, years 2010 to 2016: A regulatory and statistical analysis. TDX (Tesis Doctorals En Xarxa). https://hdl.handle.net/10803/669745

Elbehiry, A., & Marzouk, E. (2025). From farm to fork: Antimicrobial-resistant bacterial pathogens in livestock production and the food chain. Veterinary Sciences, 12(9), 862. https://doi.org/10.3390/vetsci12090862

Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: A developing country perspective. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01881

Hassan, J., & Kassem, I. I. (2020). Audacious hitchhikers: The role of travel and the international food trade in the global dissemination of mobile colistin-resistance (mcr) genes. Antibiotics, 9(7), 370. https://doi.org/10.3390/antibiotics9070370

Hosain, M. Z., Kabir, S. M. L., & Kamal, M. M. (2021). Antimicrobial uses for livestock production in developing countries. Veterinary World, 14(1), 210–221. https://doi.org/10.14202/vetworld.2021.210-221

Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environmental Science and Pollution Research, 29(8), 11054–11075. https://doi.org/10.1007/s11356-021-17825-4

Khine, N. (2021). Monitoring and characterization of colistin resistant Escherichia coli in pig farms and environment following the cessation in use of colistin. https://doi.org/10.58837/chula.the.2021.415

Koch, B. J., Hungate, B. A., & Price, L. B. (2017). Food-animal production and the spread of antibiotic resistance: The role of ecology. Frontiers in Ecology and the Environment, 15(6), 309–318. https://doi.org/10.1002/fee.1505

Lhermie, G., La Ragione, R. M., Weese, J. S., Olsen, J. E., Christensen, J. P., & Guardabassi, L. (2020). Indications for the use of highest priority critically important antimicrobials in the veterinary sector. Journal of Antimicrobial Chemotherapy, 75(7), 1671–1680. https://doi.org/10.1093/jac/dkaa104

Ma, F., Xu, S., Tang, Z., Li, Z., & Zhang, L. (2020). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 3(1), 32–38. https://doi.org/10.1016/j.bsheal.2020.09.004

Maron, D. F., Smith, T. J., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health, 9(1). https://doi.org/10.1186/1744-8603-9-48

Mmatli, M., Mbelle, N. M., & Sekyere, J. O. (2022). Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.941358

Prouillac, C. (2021). Use of antimicrobials in a French veterinary teaching hospital: A retrospective study. Antibiotics, 10(11), 1369. https://doi.org/10.3390/antibiotics10111369

Rahman, M., Alam, M., Luies, S. K., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S. M., Amin, N., Hasan, R., Tadesse, B. T., Taneja, N., Islam, M. A., & Ercumen, A. (2021). Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: A scoping review. International Journal of Environmental Research and Public Health, 19(1), 360. https://doi.org/10.3390/ijerph19010360

Ren, L., Li, Y., Ye, Z., Wang, X., Luo, X., Lu, F., & Zhao, H. (2025). Contamination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) along processing lines at a typical broiler slaughterhouse in China. Foods, 14(6), 1047. https://doi.org/10.3390/foods14061047

Samtiya, M., Matthews, K. R., Dhewa, T., & Puniya, A. K. (2022). Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies. Foods, 11(19), 2966. https://doi.org/10.3390/foods11192966

Serwecinska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water, 12(12), 3313. https://doi.org/10.3390/w12123313

Vinayamohan, P. G., Pellissery, A. J., & Venkitanarayanan, K. (2022). Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Current Opinion in Food Science, 47, 100882. https://doi.org/10.1016/j.cofs.2022.100882

Wallinga, D., Smit, L. A. M., Davis, M. F., Casey, J. A., & Nachman, K. E. (2022). A review of the effectiveness of current U.S. policies on antimicrobial use in meat and poultry production. Current Environmental Health Reports, 9(2), 339–354. https://doi.org/10.1007/s40572-022-00351-x

Xu, C., Kong, L., Gao, H., Cheng, X., & Wang, X. (2022). A review of current bacterial resistance to antibiotics in food animals. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.822689

Zheng, S., Li, Y., Chen, C., Wang, N., & Yang, F. (2025). Solutions to the dilemma of antibiotics use in livestock and poultry farming: Regulation policy and alternatives. Toxics, 13(5), 348. https://doi.org/10.3390/toxics13050348


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
53
View
0
Share