References
Aarestrup, F. M., Wegener, H. C., & Collignon, P. (2008). Resistance in bacteria of the food chain: Epidemiology and control strategies. Expert Review of Anti-Infective Therapy, 6(5), 733–750. https://doi.org/10.1586/14787210.6.5.733
Alabi, E. D., Rabiu, A. G., & Adesoji, A. T. (2025). A review of antimicrobial resistance challenges in Nigeria: The need for a One Health approach. One Health, 20, 101053. https://doi.org/10.1016/j.onehlt.2025.101053
Almansour, A. M., Alhadlaq, M. A., Alzahrani, K. O., Mukhtar, L. E., Alharbi, A. L., & Alajel, S. M. (2023). The silent threat: Antimicrobial-resistant pathogens in food-producing animals and their impact on public health. Microorganisms, 11(9), 2127. https://doi.org/10.3390/microorganisms11092127
Alotaibi, A. S. (2023). Antibiotic resistance genes (ARGs) in the environment of Saudi aquaculture as a new class of pollutants. Aquaculture Research, 2023, 1–20. https://doi.org/10.1155/2023/6761331
Anyanwu, M. U., Jaja, I. F., Okpala, C. O. R., Njoga, E. O., Okafor, N. A., & Oguttu, J. W. (2023). Mobile colistin resistance (mcr) gene-containing organisms in poultry sector in low- and middle-income countries: Epidemiology, characteristics, and One Health control strategies. Antibiotics, 12(7), 1117. https://doi.org/10.3390/antibiotics12071117
Buelow, E., Ploy, M., & Dagot, C. (2021). Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Current Opinion in Microbiology, 64, 117–124. https://doi.org/10.1016/j.mib.2021.10.005
Chopjitt, P., Boueroy, P., Morita, M., Iida, T., Akeda, Y., Hamada, S., & Kerdsin, A. (2024). Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant genes isolated from food animals in the food supply chain. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1289134
Da Silva, R. A., Arenas, N. E., Luiza, V. L., Bermudez, J. A. Z., & Clarke, S. E. (2023). Regulations on the use of antibiotics in livestock production in South America: A comparative literature analysis. Antibiotics, 12(8), 1303. https://doi.org/10.3390/antibiotics12081303
De Barcelona Departament De Farmacologia De Terapèutica I De Toxicologia, U. A., True, M. A. A., Mercedes, C. G. M., & Carles, C. I. A. (2019, November 19). Monitoring of sales of antimicrobials for animal use in the EU/EEA and Switzerland, years 2010 to 2016: A regulatory and statistical analysis. TDX (Tesis Doctorals En Xarxa). https://hdl.handle.net/10803/669745
Elbehiry, A., & Marzouk, E. (2025). From farm to fork: Antimicrobial-resistant bacterial pathogens in livestock production and the food chain. Veterinary Sciences, 12(9), 862. https://doi.org/10.3390/vetsci12090862
Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: A developing country perspective. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01881
Hassan, J., & Kassem, I. I. (2020). Audacious hitchhikers: The role of travel and the international food trade in the global dissemination of mobile colistin-resistance (mcr) genes. Antibiotics, 9(7), 370. https://doi.org/10.3390/antibiotics9070370
Hosain, M. Z., Kabir, S. M. L., & Kamal, M. M. (2021). Antimicrobial uses for livestock production in developing countries. Veterinary World, 14(1), 210–221. https://doi.org/10.14202/vetworld.2021.210-221
Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environmental Science and Pollution Research, 29(8), 11054–11075. https://doi.org/10.1007/s11356-021-17825-4
Khine, N. (2021). Monitoring and characterization of colistin resistant Escherichia coli in pig farms and environment following the cessation in use of colistin. https://doi.org/10.58837/chula.the.2021.415
Koch, B. J., Hungate, B. A., & Price, L. B. (2017). Food-animal production and the spread of antibiotic resistance: The role of ecology. Frontiers in Ecology and the Environment, 15(6), 309–318. https://doi.org/10.1002/fee.1505
Lhermie, G., La Ragione, R. M., Weese, J. S., Olsen, J. E., Christensen, J. P., & Guardabassi, L. (2020). Indications for the use of highest priority critically important antimicrobials in the veterinary sector. Journal of Antimicrobial Chemotherapy, 75(7), 1671–1680. https://doi.org/10.1093/jac/dkaa104
Ma, F., Xu, S., Tang, Z., Li, Z., & Zhang, L. (2020). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 3(1), 32–38. https://doi.org/10.1016/j.bsheal.2020.09.004
Maron, D. F., Smith, T. J., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health, 9(1). https://doi.org/10.1186/1744-8603-9-48
Mmatli, M., Mbelle, N. M., & Sekyere, J. O. (2022). Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.941358
Prouillac, C. (2021). Use of antimicrobials in a French veterinary teaching hospital: A retrospective study. Antibiotics, 10(11), 1369. https://doi.org/10.3390/antibiotics10111369
Rahman, M., Alam, M., Luies, S. K., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S. M., Amin, N., Hasan, R., Tadesse, B. T., Taneja, N., Islam, M. A., & Ercumen, A. (2021). Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: A scoping review. International Journal of Environmental Research and Public Health, 19(1), 360. https://doi.org/10.3390/ijerph19010360
Ren, L., Li, Y., Ye, Z., Wang, X., Luo, X., Lu, F., & Zhao, H. (2025). Contamination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) along processing lines at a typical broiler slaughterhouse in China. Foods, 14(6), 1047. https://doi.org/10.3390/foods14061047
Samtiya, M., Matthews, K. R., Dhewa, T., & Puniya, A. K. (2022). Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies. Foods, 11(19), 2966. https://doi.org/10.3390/foods11192966
Serwecinska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water, 12(12), 3313. https://doi.org/10.3390/w12123313
Vinayamohan, P. G., Pellissery, A. J., & Venkitanarayanan, K. (2022). Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Current Opinion in Food Science, 47, 100882. https://doi.org/10.1016/j.cofs.2022.100882
Wallinga, D., Smit, L. A. M., Davis, M. F., Casey, J. A., & Nachman, K. E. (2022). A review of the effectiveness of current U.S. policies on antimicrobial use in meat and poultry production. Current Environmental Health Reports, 9(2), 339–354. https://doi.org/10.1007/s40572-022-00351-x
Xu, C., Kong, L., Gao, H., Cheng, X., & Wang, X. (2022). A review of current bacterial resistance to antibiotics in food animals. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.822689
Zheng, S., Li, Y., Chen, C., Wang, N., & Yang, F. (2025). Solutions to the dilemma of antibiotics use in livestock and poultry farming: Regulation policy and alternatives. Toxics, 13(5), 348. https://doi.org/10.3390/toxics13050348