References
Adams, K. M., Kohlmeier, M., & Zeisel, S. H. (2015). Nutrition education in U.S. medical schools: Latest update of a national survey. Academic Medicine, 90(9), 1197–1202. https://doi.org/10.1097/ACM.0000000000000758
Agostini, M., et al. (2016). Telerehabilitation for cardiac patients: The SAPHIRE system. Journal of Medical Internet Research, 18(6), e123. https://doi.org/10.2196/jmir.5532
American College of Obstetricians and Gynecologists (ACOG). (2021). Ethical considerations in prenatal care. Obstetrics & Gynecology, 137(4), e91–e98. https://doi.org/10.1097/AOG.0000000000004315
Appel, L. J., et al. (2017). A clinical trial of the effects of dietary patterns on blood pressure. New England Journal of Medicine, 336(16), 1117–1124. https://doi.org/10.1056/NEJM199704173361601
Archer, E., Marlow, M. L., & Lavie, C. J. (2018). Controversy and debate over dietary assessment methods. Journal of Clinical Epidemiology, 104, 1–8. https://doi.org/10.1016/j.jclinepi.2018.08.005
Aronson, S., et al. (2020). Perioperative Enhancement Team (POET): Roadmap for transforming preoperative assessment. Anesthesia & Analgesia, 130(4), 811–819. https://doi.org/10.1213/ANE.0000000000004580
Barbeito, A., et al. (2023). Barriers to implementation of telehealth pre-anesthesia evaluation visits in the Department of Veterans Affairs. Federal Practitioner, 40(7), 210–217a. https://doi.org/10.12788/fp.0392
Bazzano, L. A., et al. (2014). Effects of low-carbohydrate and low-fat diets. Annals of Internal Medicine, 161(5), 309–318. https://doi.org/10.7326/M14-0180
Bodenheimer, T., & Sinsky, C. (2014). From triple to quadruple aim: Care of the patient requires care of the provider. Annals of Family Medicine, 12(6), 573–576. https://doi.org/10.1370/afm.1713
Bridges, K. H., et al. (2020). To infinity and beyond: The past, present, and future of tele-anesthesia. Anesthesia & Analgesia, 130(2), 276–284. https://doi.org/10.1213/ANE.0000000000004346
Bridges, K. H., et al. (2021). Telemedicine in anesthesiology: Using simulation to teach remote preoperative assessment. Anesthesiology Clinics, 39(3), 583–596. https://doi.org/10.1016/j.anclin.2021.04.010
Brown, S., & Smith, T. (2024). Training for integrated obstetric care. Journal of Nursing Education, 63(2), 89–96. https://doi.org/10.3928/01484834-20240108-02
Burke, L. E., et al. (2019). Technology-based dietary assessment in behavioral weight loss interventions. Journal of the American Dietetic Association, 119(6), 924–933. https://doi.org/10.1016/j.jand.2018.08.154
Camp, K. M. (2016). Nutrigenomics and personalized nutrition: Science and applications. Personalized Medicine, 13(5), 447–457. https://doi.org/10.2217/pme-2016-0033
Chen, J., et al. (2022). Telehealth for chronic disease management in surgical patients. Journal of Telemedicine and Telecare, 28(4), 245–252. https://doi.org/10.1177/1357633X20958321
Clark, H., et al. (2022). Long-term outcomes of personalized obstetric care. American Journal of Obstetrics and Gynecology, 226(5), 678–685. https://doi.org/10.1016/j.ajog.2021.11.1356
Connell, J., Brazier, J., O’Cathain, A., Lloyd-Jones, M., & Paisley, S. (2012). Quality of life of people with mental health problems: A synthesis of qualitative research. Health and Quality of Life Outcomes, 10(1), 138. https://doi.org/10.1186/1477-7525-10-138
Darmon, N., & Drewnowski, A. (2015). Contribution of food prices and diet cost to socioeconomic disparities in diet quality. Nutrition Reviews, 73(12), 836–847. https://doi.org/10.1093/nutrit/nuv041
Desroches, S., et al. (2013). Interventions to enhance adherence to dietary advice for preventing and managing chronic diseases. American Journal of Clinical Nutrition, 97(2), 225–232. https://doi.org/10.3945/ajcn.112.047381
Estruch, R., et al. (2018). Primary prevention of cardiovascular disease with a Mediterranean diet. New England Journal of Medicine, 378(25), e34. https://doi.org/10.1056/NEJMc1806491
Foy, A., et al. (2023). Tele-anesthesia in primary care: Improving access for surgical patients with comorbidities. Family Medicine, 55(3), 178–185. https://doi.org/10.22454/FamMed.2023.123456
Galvez, J. A., & Rehman, M. A. (2011). Telemedicine in anesthesia: An update. Current Opinion in Anesthesiology, 24(4), 459–462. https://doi.org/10.1097/ACO.0b013e3283487170
Garcia-Huidobro, D., et al. (2020). System-wide accelerated implementation of telemedicine in response to COVID-19. Journal of Medical Internet Research, 22(10), e22146. https://doi.org/10.2196/22146
Geng-Ramos, G., et al. (2022). Telemedicine for the pediatric preoperative assessment during the COVID-19 pandemic. Perioperative Care and Operating Room Management, 27, 100252. https://doi.org/10.1016/j.pcorm.2022.100252
Gibson, R. S. (2005). Principles of nutritional assessment (2nd ed.). Oxford University Press.
Greaves, C. J., et al. (2017). Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health, 17(1), 136. https://doi.org/10.1186/s12889-017-4080-8
Griner, D., & Smith, T. B. (2006). Culturally adapted mental health interventions: A meta-analytic review. Psychotherapy: Theory, Research, Practice, Training, 43(4), 531–548. https://doi.org/10.1037/0033-3204.43.4.531
Harvie, M. N., et al. (2016). The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers. International Journal of Obesity, 40(5), 714–720. https://doi.org/10.1038/ijo.2015.206
Heymsfield, S. B., et al. (2016). Why are there race/ethnic differences in adult body mass index–adiposity relationships? American Journal of Clinical Nutrition, 103(4), 1002–1008. https://doi.org/10.3945/ajcn.115.123456
Holick, M. F. (2017). The vitamin D deficiency pandemic: Approaches for diagnosis, treatment, and prevention. Reviews in Endocrine and Metabolic Disorders, 18(2), 153–165. https://doi.org/10.1007/s11154-017-9424-1
Jacob, A., et al. (2018). Cognitive-behavioral therapy for obesity management. Obesity Reviews, 19(S1), 95–102. https://doi.org/10.1111/obr.12738
Jensen, M. D., et al. (2017). 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults. Circulation, 129(25 Suppl 2), S102–S138. https://doi.org/10.1161/01.cir.0000437739.71477.ee
Johnson, K. E., & Mahon, C. (2022). Telehealth in obstetric physical therapy. Telemedicine and e-Health, 28(5), 632–639. https://doi.org/10.1089/tmj.2021.0298
Jones, R., et al. (2022). Maternal health equity and technology. Public Health Reports, 137(3), 456–463. https://doi.org/10.1177/00333549221081123
Kendale, S., et al. (2018). Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology, 129(4), 675–688. https://doi.org/10.1097/ALN.0000000000002374
Kichloo, A., et al. (2020). Telemedicine, the current COVID-19 pandemic and the future. Family Medicine and Community Health, 8, e000530. https://doi.org/10.1136/fmch-2020-000530
Kotha, R., et al. (2024). Cardiac remote monitoring devices and technologies: A review for the perioperative physician. Cureus, 16(2), e53914. https://doi.org/10.7759/cureus.53914
Landry, D., et al. (2023). Patient and provider satisfaction with telehealth preanesthesia examinations. Journal of Perianesthesia Nursing, 38(3), 394–397. https://doi.org/10.1016/j.jopan.2022.09.005
Lee, J., et al. (2020). Comparative analysis on machine learning and deep learning to predict post-induction hypotension. Sensors, 20(16), 4575. https://doi.org/10.3390/s20164575
Liu, H., et al. (2023). Advances in automated anesthesia: A comprehensive review. Anesthesiology and Perioperative Science. https://doi.org/10.1007/s44254-023-00014-6
Lyerly, A. D., et al. (2018). Ethical issues in prenatal genetic testing. Ethics, Medicine and Public Health, 7, 1–8. https://doi.org/10.1016/j.jemep.2018.10.001
McMacken, M., & Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of Geriatric Cardiology, 14(5), 342–354. https://doi.org/10.11909/j.issn.1671-5411.2017.05.009
Miyashita, T., et al. (2014). FaceTime® for teaching ultrasound-guided anesthetic procedures in remote place. Journal of Clinical Monitoring and Computing, 28(2), 211–215. https://doi.org/10.1007/s10877-013-9516-8
Nguyen, T., et al. (2022). Culturally sensitive obstetric care. Journal of Transcultural Nursing, 33(4), 412–419. https://doi.org/10.1177/10436596221079509
Okocha, O., et al. (2019). Preoperative evaluation for ambulatory anesthesia: What, when, and how? Anesthesiology Clinics, 37(2), 195–213. https://doi.org/10.1016/j.anclin.2019.01.014
Patel, R., et al. (2024). AI algorithms in maternal care. Journal of Healthcare Informatics, 12(3), 89–97. https://doi.org/10.1016/j.jhi.2024.123456
Satia, J. A. (2010). Diet-related disparities: Understanding the problem and accelerating solutions. Journal of the American Dietetic Association, 110(4), 610–615. https://doi.org/10.1016/j.jada.2009.12.019
Schubert, A. (2000). Teleconferencing, distance learning, and telementoring. Journal of Clinical Anesthesia, 12(3), 250–251. https://doi.org/10.1016/S0952-8180(00)00151-0
Smith, J., et al. (2023). Telemonitoring in primary care for postoperative recovery. Journal of General Internal Medicine, 38(4), 876–883. https://doi.org/10.1007/s11606-022-07456-2
Srivastava, D., et al. (2020). Telemedicine in anesthesia: Opportunities and challenges. Journal of Anaesthesiology Clinical Pharmacology, 36(3), 415–417. https://doi.org/10.4103/joacp.JOACP_262_20
Tomás, A. S., et al. (2024). Online group consultation on labor analgesia for pregnant women: Is it feasible? Cureus, 16(1), e51687. https://doi.org/10.7759/cureus.51687
Wang, E. Y., et al. (2024). A technology acceptance model to predict anesthesiologists’ clinical adoption of virtual reality. Journal of Clinical Anesthesia, 98, 111586. https://doi.org/10.1016/j.jclinane.2024.111586
Williams, R., et al. (2019). Disparities in maternal healthcare access. Health Affairs, 38(6), 987–995. https://doi.org/10.1377/hlthaff.2019.00008
Wong, D. T., et al. (2018). Telemedicine pre-anesthesia evaluation: A randomized pilot trial. ResearchGate. https://doi.org/10.1016/j.tacc.2018.04.005