References
Alotaibi, E. (2020). Application of machine learning in the hotel industry: a critical review. Journal of Association of Arab Universities for Tourism and Hospitality, 18(3), 78-96.
Berbekova, A., Uysal, M., & Assaf, A. G. (2021). A thematic analysis of crisis management in tourism: A theoretical perspective. Tourism Management, 86, 104342.
Bezzina, F., Camilleri, E., & Marmarà, V. (2021). Public Service Reform: the Future (A New Beginning). In Springer eBooks (pp. 285–323). https://doi.org/10.1007/978-3-030-74357-4_12
Boch, A., Hohma, E., & Trauth, R. (2022). Towards an accountability framework for AI: Ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich: Munich, Germany.
Buhalis, D., & Moldavska, I. (2022). Voice assistants in hospitality: using artificial intelligence for customer service. Journal of Hospitality and Tourism Technology, 13(3), 386-403.
Busulwa, R., Pickering, M., & Mao, I. (2022). Digital transformation and hospitality management competencies:
Chugh, A., Patnana, A. K., Kumar, P., Chugh, V. K., Khera, D., & Singh, S. (2020). Critical analysis of methodological quality of systematic reviews and meta-analysis of antibiotics in third molar surgeries using AMSTAR 2. Journal of Oral Biology and Craniofacial Research, 10(4), 441-449.
Egan, D., & Haynes, N. C. (2019). Manager perceptions of big data reliability in hotel revenue management decision making. International Journal of Quality & Reliability Management, 36(1), 25-39.
Feilhauer, S., & Hahn, R. (2021). Formalization of firms’ evaluation processes in cross-sector partnerships for sustainability. Business & Society, 60(3), 684-726.
Fuchs, M., Höpken, W., & Lexhagen, M. (2014). Big data analytics for knowledge generation in tourism destinations A case from Sweden. Journal of destination marketing & management, 3(4), 198-209.
Holston-Okae, B. L. (2018). The effect of employee turnover in the hospitality industry: Quantitative correlational study. International Journal of Learning and Development, 8(1), 156-183.
Huang, M., & Rust, R. T. (2021). A framework for collaborative artificial intelligence in marketing. Journal of Retailing, 98(2), 209–223. https://doi.org/10.1016/j.jretai.2021.03.001 2)
Koseoglu, M. A., Yick, M. Y. Y., King, B., & Arici, H. E. (2022). Relational bibliometrics for hospitality and tourism research: A best practice guide. Journal of Hospitality and Tourism Management, 52, 316-330.
Lamest, M., & Brady, M. (2019). Data-focused managerial challenges within the hotel sector. Tourism Review, 74(1), 104-115.
Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
Lewis, C., Fischer, S., Weiner, B. J., Stanick, C., Kim, M., et al. (2015). Outcomes for implementation science: An enhanced systematic review of instruments using evidence-based rating criteria.
Mansour, R. M., Rana, M. E., & Al-Maatouk, Q. (2020). A theoretical framework for implementation of cloud computing in the malaysian hospitality industry. International Journal, 9(2), 2277-2286.
Mariani, M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231-278.
Mariani, M., Bresciani, S., & Dagnino, G. B. (2021). The competitive productivity (CP) of tourism destinations: an integrative conceptual framework and a reflection on big data and analytics. International Journal of Contemporary Hospitality Management, 33(9), 2970-3002.
Max, R., Kriebitz, A., & Von Websky, C. (2021). Ethical considerations about the implications of artificial intelligence in finance. Handbook on ethics in finance, 577-592.
McGinley, S., Wei, W., Zhang, L., & Zheng, Y. (2021). The state of qualitative research in hospitality: A 5-year review 2014 to 2019. Cornell Hospitality Quarterly, 62(1), 8-20.
McGuire, K. A. (2016). *The analytic hospitality executive: Implementing data analytics in hotels and casinos*. [Books.google.com]. Retrieved from https://books.google.com/books? hl=en&lr=&id=fByRCgAAQBAJ&oi=fnd&pg=PR13&dq=hospitality+data+analytics+strategic+decision+making&ots=UEuWbh3OWY&sig=0IN4J0gjY6guxWOMvSErpqa3EqU
Md Habibur Rahman, Tanjila Islam, Mohammad Hamid Hasan Amjad, Md Shihab Sadik Shovon, Md. Estehad
Mirzaalian, F., & Halpenny, E. (2019). Social media analytics in hospitality and tourism: A systematic literature review and future trends. Journal of Hospitality and Tourism Technology, 10(4), 764-790.
Nadkarni, S., Kriechbaumer, F., Rothenberger, M. &and Christodoulidou, N., (2020). The path to the Hotel of Things: Internet of Things and Big Data converging in hospitality. Journal of Hospitality and Tourism Technology, 11(1), pp.93-107.
Nieveen, N., & Folmer, E. (2013). Formative evaluation in educational design research. Design Research, 153(1), 152-169.
Nogueira, A.L., (2021). The effect of data standardization in cluster analysis. Brazilian Journal of Radiation Sciences, 9(1A).
Ofori, D., & Appiah-Nimo, C. (2022). Relationship management, competitive advantage and performance of hotels: a resource-based view. Journal of African Business, 23(3), 712-730.
P. Gkliatis, I., & N. Koufopoulos, D. (2013). Strategic planning practices in the Greek hospitality industry. European Business Review, 25(6), 571-587.
Phillips-Wren, G., & Hoskisson, A. (2014). Decision support with big data: A case study in the hospitality industry. In DSS 2.0–Supporting Decision Making with New Technologies (pp. 401-413). IOS Press.
Ponting, S. S. A., & Lee, L. (2022). Building a thematic framework of identity research in hospitality organizations: a systematic literature review approach. International Journal of Contemporary Hospitality Management, 34(8), 3143-3161.
Rahman, M. H., Aunni, S. A. A., Ahmed, B., Rahman, M. M., Shabuj, M. M. H., Das, D. C., Akter, M. S., Numan, A. A. (2024). "Artificial intelligence for Improved Diagnosis and Treatment of Bacterial Infections", Microbial Bioactives, 7(1),1-18,10036. https://doi.org/10.25163/microbbioacts.7110036
Saini, A., & Bhalla, R. (2022). Artificial intelligence and automation: transforming the hospitality industry or threat to human touch. In Handbook of Research on Innovative Management Using AI in Industry 5.0 (pp. 88-97). IGI Global.
Saleh, M. (2024). Enhancing Forecasting Efficiency: Through Process Improvement.
Sao, A., Singh, S., Dixit, S., Pandey, A. K., & Singh, S. (2017). Quality, productivity and customer satisfaction in service operations: An empirical study. International Journal of Mechanical Engineering and Technology, 8(10), 579-596.
Shamim, S., Yang, Y., Zia, N. U., & Shah, M. H. (2021). Big data management capabilities in the hospitality sector: Service innovation and customer generated online quality ratings. Computers in Human Behavior, 121, 106777.
Stylos, N. (2022). An integrated duality theory framework (IDTF): marking pathways for consumer decision-making researchers in the hospitality and tourism industry. International Journal of Contemporary Hospitality Management, 34(7), 2597-2619.
Stylos, N., & Zwiegelaar, J. (2019). Big data as a game changer: how does it shape business intelligence within a tourism and hospitality industry context? (pp. 163-181). Springer Singapore.
Ting, P. J. L., Chen, S. L., Chen, H., & Fang, W. C. (2017). Using big data and text analytics to understand how customer experiences posted on yelp. com impact the hospitality industry. Contemporary Management Research, 13(2).
Van Giffen, B., Herhausen, D., & Fahse, T. (2022). Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. Journal of Business Research, 144, 93-106.
Wolnaik, R. (2024). Continous improvement: Leveraging business analytics in industry 4.0 settings. Scientific papers of Silesian University of Technology.
Yapo, A., & Weiss, J. (2018). Ethical implications of bias in machine learning.
Zerbino, P., Aloini, D., Dulmin, R., & Mininno, V. (2018). Big data-enabled customer relationship management: A holistic approach. Information Processing & Management, 54(5), 818-846.