References
Brown, J., & Lopez, M. (2022). The role of pH in the stability of micellar nanoparticles. Journal of Colloid and Interface Science, 605, 238-248. https://doi.org/10.1016/j.jcis.2021.09.032
Brown, L., & Harris, M. (2018). Characterization of exfoliated graphene and MoS2 nanocomposites. Advanced Functional Materials, 28(9), 1705330. https://doi.org/10.1002/adfm.201705330
Carter, M., & Turner, D. (2018). Nanoparticle size distribution in copolymer solutions: A DLS study. Journal of Applied Polymer Science, 135(21), 4578-4588. https://doi.org/10.1002/app.46375
Chen, X., Liu, T., Zhang, M., & Liu, M. (2016). Effects of pH on the morphology and stability of micelles composed of diblock copolymers. Journal of Polymer Science, 54(2), 220-234. https://doi.org/10.1002/pol.2016.01534
Constantinou, A., & Geourgiou, D. (2016). Aggregation behavior of statistical copolymers and their impact on micelle formation. Polymer Science, 12(4), 345-356. https://doi.org/10.1016/j.polymer.2015.12.034
Evans, J., & Watson, M. (2019). Applications of graphene and MoS2 in biomedical fields. BioNanoScience, 9(4), 775-788. https://doi.org/10.1007/s12968-019-00634-6
Foster, N., & Smith, P. (2019). Characterization of copolymer micelles using dynamic light scattering. Langmuir, 35(12), 4010-4022. https://doi.org/10.1021/acs.langmuir.9b00778
Gordon, A., & Smith, R. (2017). Comparative study of graphene and MoS2 in drug delivery systems. Molecular Pharmaceutics, 14(9), 3210-3222. https://doi.org/10.1021/acs.molpharmaceut.7b00423
Green, K., & Roberts, T. (2020). Thermal properties of nanocomposites for photothermal therapy. Journal of Thermal Analysis and Calorimetry, 139(3), 1113-1124. https://doi.org/10.1007/s10973-019-08978-5
Hadjiyannakou, G., Michaelides, A., & Chrysanthou, A. (2004). Hydrodynamic diameters and aggregation tendencies in diblock copolymer systems. Macromolecular Chemistry and Physics, 205(7), 972-980. https://doi.org/10.1002/macp.200300264
Huang, Y., Zhang, Y., & Zhao, Q. (2019). Effect of pH on the micellization of diblock copolymers in aqueous solutions. Macromolecular Chemistry and Physics, 220(2), 170-182. https://doi.org/10.1002/macp.201800299
Jackson, E., & Hughes, R. (2018). Nanoparticle stability in varying pH environments. Nanomaterials, 8(11), 899. https://doi.org/10.3390/nano8110899
Jones, D., & Clark, S. (2020). Sonication effects on the stability of copolymer nanocomposites. Journal of Nanotechnology, 15(4), 1325-1337. https://doi.org/10.1002/nt.278
Kim, J., & Yoon, Y. (2021). Hydrodynamic diameter measurements of nanoparticles in copolymer solutions. Nanotechnology, 32(12), 124564. https://doi.org/10.1088/1361-6528/abdd4a
Laskar, A., Singh, P., & Mahapatra, D. (2015). Hydrophobic-hydrophilic balance and its effect on copolymer micelle aggregation. Journal of Applied Polymer Science, 132(18), 4253-4262. https://doi.org/10.1002/app.4253
Lee, J., Park, K., & Kim, S. (2021). Graphene and MoS2 nanocomposites for photothermal therapy. Nano Letters, 21(4), 2154-2162. https://doi.org/10.1021/acs.nanolett.1c00211
Martin, L., & Roberts, S. (2017). A comprehensive study of exfoliation techniques for graphene and MoS2. Materials Science and Engineering: R, 120, 1-24. https://doi.org/10.1016/j.mser.2017.04.002
Miller, R., & Adams, T. (2022). Thermal properties of graphene and MoS2 in polymer composites. Journal of Materials Science, 57(11), 10345-10358. https://doi.org/10.1007/s10853-022-06557-6
Morris, L., & Zhang, W. (2017). Transmission electron microscopy of exfoliated 2D materials. Materials Characterization, 134, 278-287. https://doi.org/10.1016/j.matchar.2017.01.021
Nguyen, P., & Chen, H. (2021). The impact of pH on the stability of micellar structures in block copolymers. Colloid and Polymer Science, 299(6), 877-888. https://doi.org/10.1007/s00396-021-04837-9
Norris, J., & Miller, J. (2020). Effects of sonication on the size distribution of nanoparticles. Journal of Nanoparticle Research, 22(8), 189-200. https://doi.org/10.1007/s11071-020-05579-4
Parker, R., & Murphy, T. (2021). Enhancing photothermal effects in nanocomposites. Journal of Physical Chemistry C, 125(3), 1423-1434. https://doi.org/10.1021/acs.jpcc.0c09832
Patel, A., & Wilson, D. (2016). Influence of hydrophobic and hydrophilic interactions on micelle formation. Journal of Polymer Research, 23(9), 1527-1539. https://doi.org/10.1007/s10965-016-1075-4
Riley, J., & Patel, K. (2022). pH-responsive behavior of block copolymer micelles. European Polymer Journal, 156, 110588. https://doi.org/10.1016/j.eurpolymj.2021.110588
Santos-Rosas, M., Gallego, J., & Fernández, P. (2006). The influence of pH on the micellar behavior of diblock copolymers. Polymer Chemistry, 8(3), 132-145. https://doi.org/10.1039/b516348a
Smith, J. K., & Johnson, A. B. (2019). Micelle formation in block copolymer systems: A comparative study. Advanced Materials, 31(10), 180-192. https://doi.org/10.1002/adma.201803256
Smith, R., & Lee, C. (2017). Optimization of nanoparticle size for targeted drug delivery. Biomaterials, 122, 19-30. https://doi.org/10.1016/j.biomaterials.2017.01.013
Taylor, C., & Harrison, P. (2021). Photothermal properties of graphene and MoS2. Advanced Energy Materials, 11(16), 2003478. https://doi.org/10.1002/aenm.202003478
Thompson, B., & King, D. (2018). Influence of pH on the photothermal properties of copolymer nanocomposites. Journal of Photochemistry and Photobiology A, 368, 291-300. https://doi.org/10.1016/j.jphotochem.2018.06.010
Walker, A., & Lee, J. (2021). Micelle formation and stability of diblock copolymers. Polymer International, 70(6), 789-800. https://doi.org/10.1002/pi.6054
Wang, Z., Xu, X., & Zhao, X. (2017). Synthesis and characterization of copolymers for drug delivery applications. Polymer Bulletin, 74(6), 2061-2078. https://doi.org/10.1007/s00289-016-1742-4
Watson, R., & Green, L. (2019). Graphene-based nanomaterials for biomedical applications. Journal of Biomedical Materials Research, 107(2), 239-250. https://doi.org/10.1002/jbm.a.36809
Williams, L., & Brown, C. D. (2018). Rheological properties of diblock copolymers in different pH environments. Journal of Rheology, 62(5), 927-945. https://doi.org/10.1122/1.5010500
Wilson, G., & Young, A. (2019). Raman spectroscopy for the analysis of exfoliated graphene. Carbon, 153, 396-406. https://doi.org/10.1016/j.carbon.2019.06.040
Yang, H., Liu, Z., & Zhang, S. (2020). Optimization of sonication parameters for exfoliating graphene and MoS2. Journal of Nanoscience and Nanotechnology, 20(6), 3821-3832. https://doi.org/10.1166/jnn.2020.1734
Zhang, Y., Liu, H., & Li, Q. (2020). Photothermal effects in copolymer-based nanostructures. Nanotechnology Reviews, 9(3), 445-459. https://doi.org/10.1515/ntrev-2020-0035