References
Altman, D. G. (1992). Practical statistics for medical research. Chapman & Hall.
Barker, D. J. P. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261(5), 412-417.
Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., ... & Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427-451.
Bodnar, L. M., & Wisner, K. L. (2015). Nutrition and depression: implications for improving mental health among childbearing-aged women. Biological Psychiatry, 77(9), 685-687.
Chowdhury, R., Doi, S. A. R., Gopalakrishnan, S., Lam, W. Y., & Sharma, M. (2016). Systematic review with meta-analysis: impact of preoperative nutritional supplementation on postoperative outcomes in gastrointestinal surgery. Journal of Clinical Epidemiology, 75, 1-13.
Darnton-Hill, I., Nishida, C., & James, W. P. T. (2019). A life course approach to diet, nutrition and the prevention of chronic diseases. Public Health Nutrition, 7(1A), 101-121.
Duarte, D. P., Maciel, L. G., & de Souza, R. J. (2019). Machine learning and nutritional status: The state of the art. Computers in Biology and Medicine, 104, 202-210.
Halimuzzaman, Md., Sharma, Dr. J., Bhattacharjee, T., Mallik, B., Rahman, R., Rezaul Karim, M., Masrur Ikram, M., & Fokhrul Islam, M. (2024). Blockchain Technology for Integrating Electronic Records of Digital Healthcare System. Journal of Angiotherapy, 8(7). http://publishing.emanresearch.org/Journal/Abstarct/angiotherapy.879740
Hsieh, P. C., Wu, C. Z., & Chen, Y. C. (2018). Utilization of wearable devices for maternal and fetal health care: a systematic review. Nursing Research, 67(5), 401-408.
Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.
Lassi, Z. S., Moin, A., & Bhutta, Z. A. (2013). Nutrition in pregnancy: developing country perspectives. Seminars in Fetal and Neonatal Medicine, 18(6), 378-384.
Liu, Y., Chen, P. H. C., & Krause, J. (2020). How to read articles that use machine learning: users’ guides to the medical literature. JAMA, 322(18), 1800-1809.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216-1219.
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347-1358.
Subar, A. F., Freedman, L. S., Tooze, J. A., Kirkpatrick, S. I., Boushey, C., Neuhouser, M. L., ... & Kipnis, V. (2015). Addressing current criticism regarding the value of self-report dietary data. Journal of Nutrition, 145(12), 2639-2645.
Thompson, W. R., Gordon, N. F., & Pescatello, L. S. (2019). ACSM's guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 21, 163-172.
Zhang, Z., Chen, X., Zhu, Q., Li, L., Zhao, H., & Jin, B. (2020). Predicting pregnancy complications with machine learning models based on maternal health monitoring data. European Journal of Obstetrics & Gynecology and Reproductive Biology, 252, 165-170.