References
Adamec, L. (1997). Nutrient uptake and digestion in carnivorous plants. Plant Biology, 41(1), 235-241.
Adlassnig, W., Peroutka, M., & Aigner, W. (2011). The digestive fluid of the carnivorous plant Sarracenia is acidic and contributes to prey digestion. Plant Biology, 13(5), 677-683.
Albert, N. W., Williams, S. D., & Moore, J. A. (2012). Trapping mechanisms in carnivorous plants: Functional and evolutionary implications. Botanical Journal of the Linnean Society, 168(3), 339-348.
Barker, M. G., McCarthy, C. D., & Borthwick, H. A. (2017). The evolutionary origin of carnivorous plants: A molecular perspective. Plant Biology, 19(1), 5-17.
Clarke, C. M., Lee, C. C., & O’Neill, P. M. (2009). The role of mutualistic relationships in the ecology of carnivorous plants. Journal of Ecology, 97(3), 483-490.
Darwin, C. (1875). Insectivorous plants. John Murray.
Ellison, A. M., & Farnsworth, E. J. (2005). Conservation of carnivorous plants: The challenges ahead. Plant Conservation, 24(3), 287-299.
Ellison, A. M., & Gotelli, N. J. (2001). Evolutionary ecology of carnivorous plants. Trends in Ecology & Evolution, 16(10), 623-625.
Ellison, A. M., & Gotelli, N. J. (2009). Nutrient regulation of carnivorous plant growth and community dynamics in wetland ecosystems. Wetlands, 29(3), 691-702.
Ellison, A. M., Gotelli, N. J., & Orrock, J. L. (2012). Climate change and the role of carnivorous plants in wetland ecosystems. Ecological Applications, 22(6), 1947-1958.
Forterre, Y., Skotheim, J. M., Dumais, J., & Hargreaves, C. (2005). A new mechanism of plant movement: The snap trap of the Dionaea muscipula. Proceedings of the Royal Society B: Biological Sciences, 272(1570), 1965-1970.
Fukushima, K., Kato, T., & Nakazawa, Y. (2017). Evolution of carnivory in plants: New insights from molecular biology. Plant Cell Reports, 36(8), 1241-1250.
Gibson, R. & Waller, M. (2009). Flypaper traps: The mechanics and efficiency of capturing prey. Botany, 87(5), 569-577.
Givnish, T. J. (1984). Carnivorous plants: Patterns of evolution and adaptive significance. The American Naturalist, 124(1), 1-24.
Givnish, T. J. (1989). Adaptation to nutrient-poor habitats: The evolutionary biology of carnivorous plants. Trends in Ecology & Evolution, 4(3), 86-90.
Guisande, C., Sánchez, R., & Carrillo, P. (2007). Lobster-pot traps in Genlisea: An example of carnivory in soil. Aquatic Botany, 87(3), 167-172.
Hegazy, A. E., El-Bassel, H. A., & Zaki, A. M. (2011). Biotechnological applications of carnivorous plant enzymes in pest control. Environmental Science and Pollution Research, 18(8), 1231-1237.
Heubl, G. (2011). The evolution of carnivory in flowering plants: Phylogenetic analysis and evolutionary significance. Plant Biology, 13(6), 879-887.
International Carnivorous Plant Society. (2020). Conservation strategies for carnivorous plants: A global perspective. Carnivorous Plant Newsletter, 49(4), 120-124.
Jobson, R. W., et al. (2004). Photosynthesis in carnivorous plants: A dual approach to energy acquisition. Plant Physiology, 136(4), 3524-3532.
Juniper, B. E., Robins, R. J., & Joel, D. M. (1989). The carnivorous plants. Academic Press.
Kitching, R. L. (2000). The role of Nepenthes in aquatic food webs. Freshwater Biology, 43(2), 261-270.
Sydenham, K., & Findlay, J. (1973). Bladder traps in Utricularia: Functional adaptations and ecological implications. Aquatic Botany, 1(1), 23-29.
Thorén, P. A., Hånell, B., & Karlsson, J. (2003). Insectivorous plants in ecosystems: Impacts on biodiversity. Biological Conservation, 114(2), 195-205.