References
Bharti, C., Nagaich, U., Pal, A. K., Gulati, N. (2016). Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 6(1), 14-24. https://doi.org/10.4103/2230-973X.176455
Bhattacharyya, S., Khan, M. A., & Singh, B. (2014). Mesoporous silica nanoparticles in targeted drug delivery system: A review. Journal of Chemical and Pharmaceutical Research, 6(4), 2169-2178.
Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866-870. https://doi.org/10.1021/nl052326h
Cai, W., & Chen, X. (2007). Nanoplatforms for targeted molecular imaging in living subjects. Small, 3(11), 1840-1854. https://doi.org/10.1002/smll.200700296
Du, X., He, J., Wang, G., Hu, L., Wang, W., & Gu, Z. (2013). Mesoporous silica nanoparticles as a delivery system for improving anticancer efficiency of cisplatin. Journal of Colloid and Interface Science, 388(1), 82-89. https://doi.org/10.1016/j.jcis.2012.08.047
Froba, M., Estournes, C., Livage, J., & Sanchez, C. (1999). Mesoporous silica nanoparticles incorporating transition metal ions for selective catalysis. Chemistry of Materials, 11(10), 3140-3146. https://doi.org/10.1021/cm991042m
He, Q., Gao, Y., Zhang, L., Zhang, Z., Gao, F., & Li, Y. (2009). A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multidrug resistance. Biomaterials, 31(12), 3084-3096. https://doi.org/10.1016/j.biomaterials.2009.12.010
Huh, S., Chen, H. T., Wiench, J. W., Pruski, M., & Lin, V. S. Y. (2005). Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanoparticles. Angewandte Chemie International Edition, 44(12), 1826-1830. https://doi.org/10.1002/anie.200462058
Jiang, J., Pi, J., & Cai, J. (2008). The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications, 2008, Article 457104. https://doi.org/10.1155/2008/457104
Kim, J., Kim, H. S., Lee, N., Kim, T., Kim, H., Yu, T., ... & Hyeon, T. (2008). Multifunctional uniform nanocomposite particles with a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition, 47(44), 8438-8441. https://doi.org/10.1002/anie.200802234
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. https://doi.org/10.1038/359710a0
Lee, J. H., Ju, E. J., Kim, B. I., Pak, P. J., Choi, E. K., Lee, H. S., & Lee, S. C. (2011). Magnetic mesoporous silica nanoparticle-based macrophage delivery of therapeutic agents to brain tumors. Journal of the National Cancer Institute, 103(22), 1670-1681. https://doi.org/10.1093/jnci/djr379
Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—recent advances. Advanced Drug Delivery Reviews, 65(5), 689-702. https://doi.org/10.1016/j.addr.2012.07.018
Meng, H., Xue, M., Xia, T., Zhao, Y. L., Tamanoi, F., Stoddart, J. F., ... & Nel, A. E. (2010). Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. https://doi.org/10.1021/ja1033633
Paris, J. L., Cabañas, M. V., Manzano, M., & Vallet-Regí, M. (2015). Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 9(11), 11083-11093. https://doi.org/10.1021/acsnano.5b04045
Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 7(9), 1063-1077. https://doi.org/10.1517/17425247.2010.502560
Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S. Y. (2007). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17(8), 1225-1236. https://doi.org/10.1002/adfm.200601191
Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60(11), 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012
Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5
Tang, F., Li, L., & Chen, D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials, 24(12), 1504-1534. https://doi.org/10.1002/adma.201104763
Vallet-Regí, M., & Balas, F. (2008). Silica materials for medical applications. Open Biomedical Engineering Journal, 2(1), 1-9. https://doi.org/10.2174/1874120700802010001
Van Speybroeck, M., Barillaro, V., Huygens, C., Pinna, C., de Belder, S., Ludovico Martinez, L., ... & Mellaerts, R. (2009). Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs. Journal of Pharmaceutical Sciences, 98(8), 2648-2658. https://doi.org/10.1002/jps.21640
Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., ... & Hao, T. (2014). Mechanistic investigation into antibacterial behavior of zinc oxide nanoparticles against Escherichia coli. Journal of Nanoparticle Research, 16(1), 1-12. https://doi.org/10.1007/s11051-014-2257-y
Zhao, X. S., Lu, G. Q., & Whittaker, A. K. (1998). Synthesis and characterization of ordered mesoporous silica materials. Chemistry of Materials, 10(4), 902-908. https://doi.org/10.1021/cm970731r
Zhu, Y., Ikoma, T., Hanagata, N., Kaskel, S. (2010). Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small, 6(3), 471-478. https://doi.org/10.1002/smll.200901717