EMAN RESEARCH PUBLISHING | <p>Comprehensive Analysis of CRISPR-Cas Systems in Microbial and Their Multifaceted Applications</p>
MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
REVIEWS   (Open Access)

Comprehensive Analysis of CRISPR-Cas Systems in Microbial and Their Multifaceted Applications

Suriana Sabri 1*, Md Kawsar Mustofa 2,  M. T. Fouad 3, Saikat Mukherjee 4

+ Author Affiliations

Microbial Bioactives 7 (1) 1-11 https://doi.org/10.25163/microbbioacts.719376

Submitted: 26 November 2023 Revised: 23 January 2024  Published: 29 January 2024 


Abstract

Scientific interest in CRISPR-Cas systems is immense due to their emergence as groundbreaking tools for genome editing and modification in various microbes. Initially recognized as bacterial defenses against viral invaders, CRISPR-Cas systems have been found in a wide range of microbial species, including bacteria and archaea. They are classified into two main classes: Class 1, consisting of multi-subunit complexes, and Class 2, characterized by single-protein Cas9 systems. These classes display remarkable diversity, with numerous subtypes and variants enabling adaptation to various ecological niches. The versatility of CRISPR-Cas systems is one of their most appealing attributes. They employ diverse genome editing strategies, reflecting their adaptability and evolution as adaptive immune systems in microorganisms, co-evolving in response to viral threats. Beyond viral defense, these systems contribute to genome stability and integrity in bacteria and archaea. CRISPR-Cas systems have become indispensable tools in laboratories for functional genomics, precise genome editing, and gene reprogramming. They play pivotal roles in synthetic biology and biotechnology, facilitating the engineering of microorganisms for environmental remediation and biofuel production. Furthermore, CRISPR-based diagnostics enable rapid and precise identification of infections and genetic alterations, promising a transformative impact on disease diagnosis. Additionally, the potential of CRISPR-based antimicrobials to combat drug-resistant microorganisms holds significant promise in medicine. In conclusion, the diverse applications of CRISPR-Cas systems underscore the remarkable adaptability of life and the potential for scientific and medical advancements. Continued exploration and optimization of these systems will unlock new avenues for research and transformative applications across various industries. Harnessing the defensive mechanisms of microbial CRISPR-Cas systems exemplifies both the power of nature and human ingenuity for societal benefit and scientific progress.

Keywords: CRISPR-Cas, Microbial genetics, Gene editing, Microbial biotechnology, Antimicrobial defense

References


Abbott?TR, Dhamdhere?G, Liu?Y, Lin?X, Goudy?L, Zeng?L, ?Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell. 2020;181:865–e12.

Amitai?G, Sorek?R. CRISPR-Cas adaptation: Insights into the mechanism of action. Nat Rev Microbiol. 2016;14:67–76.

Arslan?Z, Hermanns?V, Wurm?R, Wagner?R, Pul?Ü. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res. 2014;42:7884–93.

Athukoralage?JS, McMahon?SA, Zhang?C, Grüschow?S, Graham?S, Krupovic?M, ?An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature. 2020;577:572–5.

Babu?M, Beloglazova?N, Flick?R, Graham?C, Skarina?T, Nocek?B, ?A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol. 2011;79:484–502.

Barrangou?R, Fremaux?C, Deveau?H, Richards?M, Boyaval?P, Moineau?S, ?CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.

Barrangou?R, Horvath?P. A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017;2:17092–9.

Barrangou?R, Marraffini?LA. CRISPR-cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54:234–44.

Béguin?PB´, Charpin?N, Koonin?EV, Forterre?P, Krupovic?M. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Res. 2016;44:10367

Bhaya?D, Davison?M, Barrangou?R. CRISPR-Cas systems in Bacteria and Archaea: Versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–97.

Bikard?D, Barrangou?R. Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol. 2017;37:155–60..

Bikard?D, Euler?CW, Jiang?W, Nussenzweig?PM, Goldberg?GW, Duportet?X, ?Exploiting CRISPR-cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–50.

Bikard?D, Hatoum-Aslan?A, Mucida?D, Marraffini?LA. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe. 2012;12:177–86..

Bondy-Denomy?J, Garcia?B, Strum?S, Du?M, Rollins?MF, Hidalgo-Reyes?Y, ?Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature. 2015;526:136–9..

Bondy-Denomy?J, Pawluk?A, Maxwell?KL, Davidson?AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2013;493:429–32..

Bourgogne?A, Garsin?DA, Qin?X, Singh?KV, Sillanpaa?J, Yerrapragada?S, ?Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 2008;9:R110.

Brockhurst?MA, Harrison?E, Hall?JPJ, Richards?T, McNally?A, MacLean?C. The ecology and evolution of pangenomes. Curr Biol. 2019;29(20):R1094–103..

Brodt?A, Lurie-Weinberger?MN, Gophna?U. CRISPR loci reveal networks of gene exchange in archaea. Biol Direct. 2011;6:65..

Brouns?SJ, Jore?MM, Lundgren?M, Westra?ER, Slijkhuis?RJ, Snijders?AP, ?Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(80)960–4.

Carroll?M, Zhou?X. Panacea in progress: CRISPR and the future of its biological research introduction. Microbiol Res. 2017;201:63–74.

Charpentier?E, Richter?H, Van Der Oost?J, White?MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev. 2015;39:428–41.

Chen?W, Zhang?Y, Zhang?Y, Pi?Y, Gu?T, Song?L, ?CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience. 2018;6:222–31.

Chylinski?K, Le Rhun?A, Charpentier?E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013;10:726–37.

Citorik?RJ, Mimee?M, Lu?TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32:1141–5.

Cox?DBT, Gootenberg?JS, Abudayyeh?OO, Franklin?B, Kellner?MJ, Joung?J, ?RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.

Cui?L, Wang?X, Huang?D, Zhao?Y, Feng?J, Lu?Q, ?CRISPR-cas3 of Salmonella upregulates bacterial biofilm Formation and virulence to host cells by targeting quorum-sensing systems. Pathogens. 2020;9:53.

Curti?L, Pereyra-Bonnet?F, Gimenez?C. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. bioRxiv. 2020;2020. 02.29.971127.

Dai?W, Xu?X, Wang?D, Wu?J, Wang?J. Cancer therapy with a CRISPR-assisted telomerase-activating gene expression system. Oncogene. 2019;38:4110–24.

Díez-Villaseñor?C, Guzmán?NM, Almendros?C, García-Martínez?J, Mojica?FJ. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol. 2013;10:792–802.

Ding?X, Yin?K, Li?Z, Liu?C. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: A case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. bioRxiv. 2020;2020. .03.19.998724.

Dong?D, Guo?M, Wang?S, Zhu?Y, Wang?S, Xiong?Z, ?Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature. 2017;546:436–9.

Doron?S, Melamed?S, Ofir?G, Leavitt?A, Lopatina?A, Keren?M, ?Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018:359.

Doudna?JA, Charpentier?E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

Faure?G, Shmakov?SA, Yan?WX, Cheng?DR, Scott?DA, Peters?JE, ?CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat Rev Microbiol. 2019;17:513–25.

Fineran?PC, Charpentier?E. Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. Virology. 2012;434:202–9.

Gao?NJ, Al-Bassam?MM, Poudel?S, Wozniak?JM, Gonzalez?DJ, Olson?J, ?Functional and proteomic analysis of Streptococcus pyogenes virulence upon loss of its native Cas9 nuclease. Front Microbiol. 2019;10:1967..

García-Gutiérrez?E, Almendros?C, Mojica?FJ, Guzmán?NM, García-Martínez?J. CRISPR content correlates with the pathogenic potential of Escherichia coli. PloS One. 2015;10:e0131935..

García-Martínez?J, Maldonado?RD, Guzmán?NM, Mojica?FJM. The CRISPR conundrum: Evolve and maybe die, or survive and risk stagnation. Microb Cell. 2018;5:262–8.

Gilbert?LA, Horlbeck?MA, Adamson?B, Villalta?JE, Chen?Y, Whitehead?EH, ?Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.

Gleditzsch?D, Pausch?P, Müller-Esparza?H, Özcan?A, Guo?X, Bange?G, ?PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol. 2019;16:504–17.

Gomaa?AA, Klumpe?HE, Luo?ML, Selle?K, Barrangou?R, Beisel?CL. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. Mbio. 2014;5:e00928.

Gong?T, Tang?B, Zhou?X, Zeng?J, Lu?M, Guo?X, ?Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol. 2018;33:440–9.

Gophna?U, Kristensen?DM, Wolf?YI, Popa?O, Drevet?C, Koonin?EV. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales. ISME J. 2015;9:2021–7.

Grissa?I, Vergnaud?G, Pourcel?C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35:W52.

Gunderson?FF, Cianciotto?NP. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. Mbio. 2013;4:e00074.

Haft?DH, Selengut?J, Mongodin?EF, Nelson?KE. A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes. PloS Comput Biol. 2005;1:e60.

Hampton?HG, Watson?BNJ, Fineran?PC. The arms race between bacteria and their phage foes. Nature. 2020;577:327–36.

Han?P, Niestemski?LR, Barrick?JE, Deem?MW. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system. Phys Biol. 2013;10:025004.

Heidrich?N, Hagmann?A, Bauriedl?S, Vogel?J, Schoen?C. The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells. RNA Biol. 2019;16:390–6.

Makarova?KS, Aravind?L, Grishin?NV, Rogozin?IB, Koonin?EV. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30:482–96.

Makarova?KS, Grishin?NV, Shabalina?SA, Wolf?YI, Koonin?EV. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1:7.

Mandin?P, Repoila?F, Vergassola?M, Geissmann?T, Cossart?P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 2007;35(3):962–74.

Mangas?EL, Rubio?A, Álvarez-Marín?R, Labrador-Herrera?G, Pachón?J, Pachón-Ibáñez?ME, Pangenome of Acinetobacter baumannii uncovers two groups of genomes, one of them with genes involved in CRISPR/Cas defence systems associated with the absence of plasmids and exclusive genes for biofilm formation. Microb Genom. 2019;5.

McDonald?ND, Regmi?A, Morreale?DP, Borowski?JD, Boyd?EF. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics. 2019;20:105.

Metsky?HC, Freije?CA, Kosoko-Thoroddsen?T-SF, Sabeti?PC, Myhrvold?C. CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design. bioRxiv. 2020;2020. 02.26.967026.

Nguyen?TM, Zhang?Y, Pandolfi?PP. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020;30:189–90.

Nishimasu?H, Nureki?O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol. 2017;43:68–78.

Palmer?KL, Gilmore?MS. Multidrug-resistant enterococci lack CRISPR-cas. Mbio. 2010;1.

Patterson?AG, Jackson?SA, Taylor?C, Evans?GB, Salmond?GPC, Przybilski?R, ?Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol Cell. 2016;64:1102–8.

Pawluk?A, Amrani?N, Zhang?Y, Garcia?B, Hidalgo-Reyes?Y, Lee?J, ?Naturally occurring off-switches for CRISPR-Cas9. Cell. 2016a;167:1829–e9.

Samanta?MK, Dey?A, Gayen?S. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res. 2016;25:561–73.

Sampson?TR, Saroj?SD, Llewellyn?AC, Tzeng?YL, Weiss?DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497:254–7.

Schaeffer?SM, Nakata?PA. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 2015;240:130–42.

Seed?KD. Battling phages: How bacteria defend against viral attack. PloS Pathog. 2015;11(6):e1004847.

van Belkum?A, Soriaga?LB, LaFave?MC, Akella?S, Veyrieras?JB, Barbu?EM, ?Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa. MBio. 2015;6:e01796.

Committee on Publication Ethics

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
66
View

Share