EMAN RESEARCH PUBLISHING | <p>Maternal Hypercholesterolemia is a Significant Risk Factor for Atherogenesis – A Systematic Review</p>
Inflammation Cancer Angiogenesis Biology and Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
REVIEWS   (Open Access)

Maternal Hypercholesterolemia is a Significant Risk Factor for Atherogenesis – A Systematic Review

Anastasia V. Poznyak 1*, Victoria A. Khotina 2, Vasily N. Sukhorukov 2, Nikolay Sadykhov 2, Anton Y Postnov 2, and Alexander N. Orekhov 2*

+ Author Affiliations

Journal of Angiotherapy 8 (1) 1-10 https://doi.org/10.25163/angiotherapy.819390

Submitted: 26 November 2023 Revised: 15 December 2023  Published: 15 January 2024 


Abstract

Background: Cardiovascular diseases, typically associated with older individuals, have been found to have risk factors that can develop during childhood and even fetal development. Maternal hypercholesterolemia, experienced during pregnancy, is one such factor that affects the fetus. This review aims to explore the mechanisms through which maternal hypercholesterolemia can contribute to the development of atherosclerosis and subsequent cardiovascular diseases and events. Methods: To conduct this review, we systematically analyzed existing literature and collected relevant information on the impact of maternal hypercholesterolemia on fetal development and subsequent cardiovascular health. We examined studies that investigated the pathways and mechanisms by which maternal hypercholesterolemia influences atherosclerosis and its related diseases. Results: Our review identified several mechanisms by which maternal hypercholesterolemia can stimulate the development of atherosclerosis and contribute to cardiovascular diseases and events. These mechanisms include alterations in lipid metabolism, oxidative stress, endothelial dysfunction, inflammation, and vascular remodeling. Maternal hypercholesterolemia during pregnancy can lead to lipid abnormalities in the fetus, triggering early atherosclerotic changes that persist into adulthood. These changes may increase the risk of cardiovascular diseases later in life. Conclusion: This review highlights the potential impact of maternal hypercholesterolemia on the development of atherosclerosis and subsequent cardiovascular diseases in offspring. Understanding the mechanisms involved is crucial for developing effective preventive strategies and interventions. By addressing maternal hypercholesterolemia and its effects during pregnancy, healthcare providers can contribute to reducing the burden of cardiovascular diseases in future generations. Further research is needed to elucidate the precise mechanisms and long-term effects, which will aid in developing targeted approaches for early intervention and risk mitigation.

Keywords: Maternal hypercholesterolemia; Hypercholesterolemia; Atherosclerosis; CVD; Pregnancy; Gestation.

References


Adank, M. C., Johansen, A. K., Benschop, L., Van Streun, S. P., Smak Gregoor, A. M., Øyri, L. K. L., Mulder, M. T., Steegers, E. A. P., Holven, K. B., & Roeters van Lennep, J. E. (2022). Maternal lipid levels in early pregnancy as a predictor of childhood lipid levels: a prospective cohort study. BMC pregnancy and childbirth, 22(1), 588. https://doi.org/10.1186/s12884-022-04905-7

Aye, I. L., Waddell, B. J., Mark, P. J., & Keelan, J. A. (2010). Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochimica et biophysica acta, 1801(9), 1013–1024. https://doi.org/10.1016/j.bbalip.2010.05.015

Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plösch T. The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod. 2013 Jan 31;88(1):24. doi: 10.1095/biolreprod.112.102442. PMID: 23153566.

Baardman, M. E., Kerstjens-Frederikse, W. S., Berger, R. M., Bakker, M. K., Hofstra, R. M., & Plösch, T. (2013). The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biology of reproduction, 88(1), 24. https://doi.org/10.1095/biolreprod.112.102442

Bacenková, D., Trebunová, M., Cížková, D., Hudák, R., Dosedla, E., Findrik-Balogová, A., & Živcák, J. (2022). In Vitro Model of Human Trophoblast in Early Placentation. Biomedicines, 10(4), 904. https://doi.org/10.3390/biomedicines10040904

Bartels, Ä., & O'Donoghue, K. (2011). Cholesterol in pregnancy: a review of knowns and unknowns. Obstetric medicine, 4(4), 147–151. https://doi.org/10.1258/om.2011.110003

Benagiano, M., Mancuso, S., Brosens, J. J., & Benagiano, G. (2021). Long-Term Consequences of Placental Vascular Pathology on the Maternal and Offspring Cardiovascular Systems. Biomolecules, 11(11), 1625. https://doi.org/10.3390/biom11111625

Bergmann, A., Zygmunt, M., & Clapp, J. F., 3rd (2004). Running throughout pregnancy: effect on placental villous vascular volume and cell proliferation. Placenta, 25(8-9), 694–698. https://doi.org/10.1016/j.placenta.2004.02.005

Burke, K. T., Colvin, P. L., Myatt, L., Graf, G. A., Schroeder, F., & Woollett, L. A. (2009). Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster. Journal of lipid research, 50(6), 1146–1155. https://doi.org/10.1194/jlr.M800538-JLR200

Cantin, C., Arenas, G., San Martin, S., & Leiva, A. (2021). Effects of lipoproteins on endothelial cells and macrophages function and its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy. Placenta, 106, 79–87. https://doi.org/10.1016/j.placenta.2021.02.019

Chen, Y. H., Lin, S. J., Chen, J. W., Ku, H. H., & Chen, Y. L. (2002). Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. British journal of pharmacology, 135(1), 37–47. https://doi.org/10.1038/sj.bjp.0704458

Contreras-Duarte, S., Escalona-Rivano, R., Cantin, C., Valdivia, P., Zapata, D., Carvajal, L., Brito, R., Cerda, Á., Illanes, S., Gutiérrez, J., & Leiva, A. (2023). Small extracellular vesicles from pregnant women with maternal supraphysiological hypercholesterolemia impair endothelial cell function in vitro. Vascular pharmacology, 150, 107174. https://doi.org/10.1016/j.vph.2023.107174

Del Gaudio, I., Hendrix, S., Christoffersen, C., & Wadsack, C. (2020). Neonatal HDL Counteracts Placental Vascular Inflammation via S1P-S1PR1 Axis. International journal of molecular sciences, 21(3), 789. https://doi.org/10.3390/ijms21030789

Drew, B. G., Fidge, N. H., Gallon-Beaumier, G., Kemp, B. E., & Kingwell, B. A. (2004). High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 101(18), 6999–7004. https://doi.org/10.1073/pnas.0306266101

Feng, Y., Cai, Z. R., Tang, Y., Hu, G., Lu, J., He, D., & Wang, S. (2014). TLR4/NF-κB signaling pathway-mediated and oxLDL-induced up-regulation of LOX-1, MCP-1, and VCAM-1 expressions in human umbilical vein endothelial cells. Genetics and molecular research : GMR, 13(1), 680–695. https://doi.org/10.4238/2014.January.28.13

Franceschelli, S., De Cecco, F., Pesce, M., Ripari, P., Guagnano, M. T., Nuevo, A. B., Grilli, A., Sancilio, S., & Speranza, L. (2023). Hydroxytyrosol Reduces Foam Cell Formation and Endothelial Inflammation Regulating the PPARγ/LXRα/ABCA1 Pathway. International journal of molecular sciences, 24(3), 2057. https://doi.org/10.3390/ijms24032057

Gimbrone, M. A., Jr, & García-Cardeña, G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation research, 118(4), 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

Gong, M., Wilson, M., Kelly, T., Su, W., Dressman, J., Kincer, J., Matveev, S. V., Guo, L., Guerin, T., Li, X. A., Zhu, W., Uittenbogaard, A., & Smart, E. J. (2003). HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. The Journal of clinical investigation, 111(10), 1579–1587. https://doi.org/10.1172/JCI16777

Gu, H. M., Wang, F. Q., & Zhang, D. W. (2014). Caveolin-1 interacts with ATP binding cassette transporter G1 (ABCG1) and regulates ABCG1-mediated cholesterol efflux. Biochimica et biophysica acta, 1841(6), 847–858. https://doi.org/10.1016/j.bbalip.2014.02.002

Herrick, E. J., & Bordoni, B. (2023). Embryology, Placenta. In StatPearls. StatPearls Publishing.

Horne, H., Holme, A. M., Roland, M. C. P., Holm, M. B., Haugen, G., Henriksen, T., & Michelsen, T. M. (2019). Maternal-fetal cholesterol transfer in human term pregnancies. Placenta, 87, 23–29. https://doi.org/10.1016/j.placenta.2019.09.001

Hussain, T., Murtaza, G., Metwally, E., Kalhoro, D. H., Kalhoro, M. S., Rahu, B. A., Sahito, R. G. A., Yin, Y., Yang, H., Chughtai, M. I., & Tan, B. (2021). The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators of inflammation, 2021, 9962860. https://doi.org/10.1155/2021/9962860

Jayalekshmi, V. S., & Ramachandran, S. (2021). Maternal cholesterol levels during gestation: boon or bane for the offspring?. Molecular and cellular biochemistry, 476(1), 401–416. https://doi.org/10.1007/s11010-020-03916-2

Joo, E. H., Kim, Y. R., Kim, N., Jung, J. E., Han, S. H., & Cho, H. Y. (2021). Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. International journal of molecular sciences, 22(18), 10122. https://doi.org/10.3390/ijms221810122

Kloc, M., Uosef, A., Kubiak, J. Z., & Ghobrial, R. M. (2020). Role of Macrophages and RhoA Pathway in Atherosclerosis. International journal of molecular sciences, 22(1), 216. https://doi.org/10.3390/ijms22010216

Krieger M. (2001). Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. The Journal of clinical investigation, 108(6), 793–797. https://doi.org/10.1172/JCI14011

Lee, M. K., Moore, X. L., Fu, Y., Al-Sharea, A., Dragoljevic, D., Fernandez-Rojo, M. A., Parton, R., Sviridov, D., Murphy, A. J., & Chin-Dusting, J. P. (2016). High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. British journal of pharmacology, 173(4), 741–751. https://doi.org/10.1111/bph.13319

Lee, Y., & Siddiqui, W. J. (2023). Cholesterol Levels. In StatPearls. StatPearls Publishing.

Ley, K., Miller, Y. I., & Hedrick, C. C. (2011). Monocyte and macrophage dynamics during atherogenesis. Arteriosclerosis, thrombosis, and vascular biology, 31(7), 1506–1516. https://doi.org/10.1161/ATVBAHA.110.221127

Liu, M., Cai, Y., Pan, J., Peter, K., & Li, Z. (2022). Macrophage polarization as a potential therapeutic target for atherosclerosis: a dynamic stochastic modelling study. Royal Society open science, 9(8), 220239. https://doi.org/10.1098/rsos.220239

Ma, J., Rebholz, C. M., Braun, K. V. E., Reynolds, L. M., Aslibekyan, S., Xia, R., Biligowda, N. G., Huan, T., Liu, C., Mendelson, M. M., Joehanes, R., Hu, E. A., Vitolins, M. Z., Wood, A. C., Lohman, K., Ochoa-Rosales, C., van Meurs, J., Uitterlinden, A., Liu, Y., Elhadad, M. A., … Levy, D. (2020). Whole Blood DNA Methylation Signatures of Diet Are Associated With Cardiovascular Disease Risk Factors and All-Cause Mortality. Circulation. Genomic and precision medicine, 13(4), e002766. https://doi.org/10.1161/CIRCGEN.119.002766

Mentrup, T., Cabrera-Cabrera, F., & Schröder, B. (2021). Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Frontiers in cardiovascular medicine, 7, 594441. https://doi.org/10.3389/fcvm.2020.594441

Muñoz-Vega, M., Massó, F., Páez, A., Vargas-Alarcón, G., Coral-Vázquez, R., Mas-Oliva, J., Carreón-Torres, E., & Pérez-Méndez, Ó. (2018). HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. International journal of molecular sciences, 19(11), 3394. https://doi.org/10.3390/ijms19113394

Mushenkova, N. V., Bezsonov, E. E., Orekhova, V. A., Popkova, T. V., Starodubova, A. V., & Orekhov, A. N. (2021). Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines, 9(8), 915. https://doi.org/10.3390/biomedicines9080915

Ogura, K., Miyatake, T., Fukui, O., Nakamura, T., Kameda, T., & Yoshino, G. (2002). Low-density lipoprotein particle diameter in normal pregnancy and preeclampsia. Journal of atherosclerosis and thrombosis, 9(1), 42–47. https://doi.org/10.5551/jat.9.42

Pahwa, R., & Jialal, I. (2023). Atherosclerosis. In StatPearls. StatPearls Publishing.

Palinski, W., & Napoli, C. (2002). The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 16(11), 1348–1360. https://doi.org/10.1096/fj.02-0226rev

Panda, P., Verma, H. K., Lakkakula, S., Merchant, N., Kadir, F., Rahman, S., Jeffree, M. S., Lakkakula, B. V. K. S., & Rao, P. V. (2022). Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. Oxidative medicine and cellular longevity, 2022, 9154295. https://doi.org/10.1155/2022/9154295

Parker, C. R., Jr, Fortunato, S. J., Carr, B. R., Owen, J., Hankins, G. D., & Hauth, J. C. (1988). Apolipoprotein A-1 in umbilical cord blood of newborn infants: relation to gestational age and high-density lipoprotein cholesterol. Pediatric research, 23(4), 348–351. https://doi.org/10.1203/00006450-198804000-00002

Porter, F. D., & Herman, G. E. (2011). Malformation syndromes caused by disorders of cholesterol synthesis. Journal of lipid research, 52(1), 6–34. https://doi.org/10.1194/jlr.R009548

Puig, N., Montolio, L., Camps-Renom, P., Navarra, L., Jiménez-Altayó, F., Jiménez-Xarrié, E., Sánchez-Quesada, J. L., & Benitez, S. (2020). Electronegative LDL Promotes Inflammation and Triglyceride Accumulation in Macrophages. Cells, 9(3), 583. https://doi.org/10.3390/cells9030583

Riwanto, M., & Landmesser, U. (2013). High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. Journal of lipid research, 54(12), 3227–3243. https://doi.org/10.1194/jlr.R037762

Rodrigues, A. C., Hirata, M. H., & Hirata, R. D. (2009). Impact of cholesterol on ABC and SLC transporters expression and function and its role in disposition variability to lipid-lowering drugs. Pharmacogenomics, 10(6), 1007–1016. https://doi.org/10.2217/pgs.09.18

Roubtsova, A., Garçon, D., Lacoste, S., Chamberland, A., Marcinkiewicz, J., Métivier, R., Sotin, T., Paquette, M., Bernard, S., Cariou, B., Le May, C., Koschinsky, M. L., Seidah, N. G., & Prat, A. (2022). PCSK9 deficiency results in a specific shedding of excess LDLR in female mice only: Role of hepatic cholesterol. Biochimica et biophysica acta. Molecular and cell biology of lipids, 1867(12), 159217. https://doi.org/10.1016/j.bbalip.2022.159217

Sletner, L., Moen, A. E. F., Yajnik, C. S., Lekanova, N., Sommer, C., Birkeland, K. I., Jenum, A. K., & Böttcher, Y. (2021). Maternal Glucose and LDL-Cholesterol Levels Are Related to Placental Leptin Gene Methylation, and, Together With Nutritional Factors, Largely Explain a Higher Methylation Level Among Ethnic South Asians. Frontiers in endocrinology, 12, 809916. https://doi.org/10.3389/fendo.2021.809916

Stadler, J. T., Wadsack, C., & Marsche, G. (2021). Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines, 9(4), 349. https://doi.org/10.3390/biomedicines9040349

Stefulj, J., Panzenboeck, U., Becker, T., Hirschmugl, B., Schweinzer, C., Lang, I., Marsche, G., Sadjak, A., Lang, U., Desoye, G., & Wadsack, C. (2009). Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circulation research, 104(5), 600–608. https://doi.org/10.1161/CIRCRESAHA.108.185066

Trakaki, A., & Marsche, G. (2021). Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines, 9(6), 587. https://doi.org/10.3390/biomedicines9060587

Valanti, E. K., Dalakoura-Karagkouni, K., & Sanoudou, D. (2018). Current and Emerging Reconstituted HDL-apoA-I and HDL-apoE Approaches to Treat Atherosclerosis. Journal of personalized medicine, 8(4), 34. https://doi.org/10.3390/jpm8040034

Wallner, S., Grandl, M., Liebisch, G., Peer, M., Orsó, E., Sigrüner, A., Sobota, A., & Schmitz, G. (2016). oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages. PloS one, 11(11), e0166798. https://doi.org/10.1371/journal.pone.0166798

Wang, Y., & Zhao, S. (2010). Vascular Biology of the Placenta. Morgan & Claypool Life Sciences.

Wild, R., & Feingold, K. R. (2023). Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. In K. R. Feingold (Eds.) et. al., Endotext. MDText.com, Inc.

Wu, X., Wang, Z., Shi, J., Yu, X., Li, C., Liu, J., Zhang, F., Chen, H., & Zheng, W. (2022). Macrophage polarization toward M1 phenotype through NF-κB signaling in patients with Behçet's disease. Arthritis research & therapy, 24(1), 249. https://doi.org/10.1186/s13075-022-02938-z

Xu, H., Jiang, J., Chen, W., Li, W., & Chen, Z. (2019). Vascular Macrophages in Atherosclerosis. Journal of immunology research, 2019, 4354786. https://doi.org/10.1155/2019/4354786

Yañez, M. J., & Leiva, A. (2022). Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel, Switzerland), 11(3), 500. https://doi.org/10.3390/antiox11030500

Yang, X. P., Amar, M. J., Vaisman, B., Bocharov, A. V., Vishnyakova, T. G., Freeman, L. A., Kurlander, R. J., Patterson, A. P., Becker, L. C., & Remaley, A. T. (2013). Scavenger receptor-BI is a receptor for lipoprotein(a). Journal of lipid research, 54(9), 2450–2457. https://doi.org/10.1194/jlr.M038877

Yoon, H. J., Chay, K. O., & Yang, S. Y. (2019). Native low density lipoprotein increases the production of both nitric oxide and reactive oxygen species in the human umbilical vein endothelial cells. Genes & genomics, 41(3), 373–379. https://doi.org/10.1007/s13258-018-00777-4

Yvan-Charvet, L., Wang, N., & Tall, A. R. (2010). Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arteriosclerosis, thrombosis, and vascular biology, 30(2), 139–143. https://doi.org/10.1161/ATVBAHA.108.179283

Zhang, R., Dong, S., Ma, W. W., Cai, X. P., Le, Z. Y., Xiao, R., Zhou, Q., & Yu, H. L. (2017). Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PloS one, 12(2), e0171934. https://doi.org/10.1371/journal.pone.0171934

Zhu, H. L., Xia, M., Hou, M. J., Tang, Z. H., Zheng, P. Y., & Ling, W. H. (2005). Zhonghua xin xue guan bing za zhi, 33(8), 743–747.

Committee on Publication Ethics

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
200
View

Share