Journal of Primeasia
Evaluating the Carcinogenic Potential of Sunset Yellow via Biochemical Disruption and Mammary Gland Remodeling in Female Albino Rats
Moin Uddin Patwary1*, Md. Taufique Hasan Bhuiyan Sezan2, Ezaz Ahmad Shah1, Shamim Al Mamun1, Sanzida Yeasmin2, Badhan Mojumder2, Hasnat Akash2, Md. Bedarul Islam Pranto3, Barsha Saha2, Yeamin Howlader2
Journal of Primeasia 6 (1) 1-8 https://doi.org/10.25163/primeasia.6110527
Submitted: 02 October 2025 Revised: 26 November 2025 Accepted: 02 December 2025 Published: 04 December 2025
Abstract
Background: Sunset yellow is a synthetic yellow azo dye which is commonly used in the food and drink industry. Even though the substance was approved by regulators, there are recent reports chronic use will cause metabolic disorders and cancer. But, the long-term effects of the remedy on biochemical, tumorigenic and histological parameters remain poorly investigated. The aim of the present study was to determine whether prolonged exposure to Sunset Yellow causes systemic toxicity and if it alters mammary tissue as a carcinogen.
Methods: Rats were divided into 5 groups (normal control, positive control 2 mg/kg body weight DMBA and three treatment groups which were given orally Sunset Yellow 200, 400 and 600 mg/kg for 40 weeks). They analyzed the serum biochemical markers (lipid profile, liver and kidney function), tumor biomarkers (AFP and CA 15-3), and mammary tissue histopathology.
Results: DMBA raised serum levels of triglyceride, creatinine, cholesterol, LDL, SGPT and tumor markers with reduced HDL. The biochemical changes produced by Sunset Yellow were dose dependent, and the highest dose (600 mg/kg) caused marked increases in hepatic and renal markers, and AFP and CA 15-3. Histological analysis displayed malignant ductules, and DCIS in the higher dose groups indicates pre-neoplastic changes.
Conclusion: chronic consumption of Sunset Yellow at higher doses can cause systemic toxicity as well as histological changes indicative of early-stage carcinogenesis. Increased public health concerns require stricter evaluations for synthetic food dye safety.
Keywords: Sunset Yellow, DMBA, Mammary Tumor, Alpha-fetoprotein (AFP), CA 15-3, Biochemical
References
Al-Adilee, K. J., Jawad, S. H., Kyhoiesh, H. A. K., & Hassan, H. M. (2024). Synthesis, characterization, biological applications, and molecular docking studies of some transition metal complexes with azo dye ligand derived from 5-methyl imidazole. Journal of Molecular Structure, 1295, 136695. https://doi.org/10.1016/j.molstruc.2023.136695
Amin, K. A., Abdel Hameid, H., & Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10), 2994–2999. https://doi.org/10.1016/j.fct.2010.07.039
ANS. (2014). Reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110). EFSA Journal, 12(7), 3765. https://doi.org/10.2903/j.efsa.2014.3765
Brisken, C., & Ataca, D. (2015). Endocrine hormones and local signals during the development of the mouse mammary gland. WIREs Developmental Biology, 4(3), 181–195. https://doi.org/10.1002/wdev.172
Chami, F., & Wilson, M. R. (2010). Molecular Order in a Chromonic Liquid Crystal: A Molecular Simulation Study of the Anionic Azo Dye Sunset Yellow. Journal of the American Chemical Society, 132(22), 7794–7802. https://doi.org/10.1021/ja102468g
Chung, K. (2000). Mutagenicity and carcinogenicity of aromatic amines metabolically produced from Azo Dyes. Journal of Environmental Science and Health, Part C, 18(1), 51–74. https://doi.org/10.1080/10590500009373515
Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233–261. https://doi.org/10.1080/10590501.2016.1236602
de Oliveira, Z. B., Silva da Costa, D. V., da Silva dos Santos, A. C., da Silva Júnior, A. Q., de Lima Silva, A., de Santana, R. C. F., Costa, I. C. G., de Sousa Ramos, S. F., Padilla, G., & da Silva, S. K. R. (2024). Synthetic Colors in Food: A Warning for Children’s Health. International Journal of Environmental Research and Public Health, 21(6), 682. https://doi.org/10.3390/ijerph21060682
El-Desoky, G. E., Wabaidur, S. M., AlOthman, Z. A., & Habila, M. A. (2022). Evaluation of Nano-curcumin effects against Tartrazine-induced abnormalities in liver and kidney histology and other biochemical parameters. Food Science & Nutrition, 10(5), 1344–1356. https://doi.org/10.1002/fsn3.2790
Gaunt, I. F., Mason, P. L., Grasso, P., & Kiss, I. S. (1974). Long-term toxicity of Sunset Yellow FCF in mice. Food and Cosmetics Toxicology, 12(1), 1–9. https://doi.org/10.1016/0015-6264(74)90317-4
Huang, P., Han, J., & Hui, L. (2010). MAPK signaling in inflammation-associated cancer development. Protein & Cell, 1(3), 218–226. https://doi.org/10.1007/s13238-010-0019-9
Inoue, J., Gohda, J., Akiyama, T., & Semba, K. (2007). NF-κB activation in development and progression of cancer. Cancer Science, 98(3), 268–274. https://doi.org/10.1111/j.1349-7006.2007.00389.x
Islam, T. M. T. (2024). Toxicological Assessment of Azo Dye Brown HT In Vivo. Journal of Angiotherapy, 8(8), 1–8. https://doi.org/10.25163/angiotherapy.889858
Islam, T. M. T., Mahat, N. C., Shaker, I. A., Rahman, S. A., Kabir, Md. H., Shohel, M. A., Kamruzzaman, Md., & Tang, A. K. (2024). Investigation of the Relationship Between Brown HT Dye Exposure and Mammary Tumor Development in Female Rats: An Assessment of the Potential Risk of Breast Cancer. Cureus. https://doi.org/10.7759/cureus.73351
Jahin, I., Phillips, T., Marcotti, S., Gorey, M.-A., Cox, S., & Parsons, M. (2023). Extracellular matrix stiffness activates mechanosensitive signals but limits breast cancer cell spheroid proliferation and invasion. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1292775
Josephy, P. D., & Allen-Vercoe, E. (2023). Reductive metabolism of azo dyes and drugs: Toxicological implications. Food and Chemical Toxicology, 178, 113932. https://doi.org/10.1016/j.fct.2023.113932
Khayyat, L. I., Essawy, A. E., Sorour, J. M., & Soffar, A. (2018). Sunset Yellow and Allura Red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats. PeerJ, 6, e5689. https://doi.org/10.7717/peerj.5689
Kyhoiesh, H. A. K., & Al-Adilee, K. J. (2022). Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. Chemical Papers, 76(5), 2777–2810. https://doi.org/10.1007/s11696-022-02072-9
Medeiros, D. M., Stoecker, B., Plattner, A., Jennings, D., & Haub, M. (2004). Iron Deficiency Negatively Affects Vertebrae and Femurs of Rats Independently of Energy Intake and Body Weight. The Journal of Nutrition, 134(11), 3061–3067. https://doi.org/10.1093/jn/134.11.3061
Miller, M. D., Steinmaus, C., Golub, M. S., Castorina, R., Thilakartne, R., Bradman, A., & Marty, M. A. (2022). Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environmental Health, 21(1), 45. https://doi.org/10.1186/s12940-022-00849-9
Rahman, S. S., Klamrak, A., Mahat, N. C., Rahat, R. H., Nopkuesuk, N., Kamruzzaman, M., Janpan, P., Saengkun, Y., Nabnueangsap, J., Soonkum, T., Sangkudruea, P., Jangpromma, N., Kulchat, S., Patramanon, R., Chaveerach, A., Daduang, J., & Daduang, S. (2025). Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients, 17(3), 594. https://doi.org/10.3390/nu17030594
Rovina, K., Acung, L. A., Siddiquee, S., Akanda, J. H., & Shaarani, S. M. (2017). Extraction and Analytical Methods for Determination of Sunset Yellow (E110)—a Review. Food Analytical Methods, 10(3), 773–787. https://doi.org/10.1007/s12161-016-0645-9
Rovina, K., Prabakaran, P. P., Siddiquee, S., & Shaarani, S. M. (2016). Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. TrAC Trends in Analytical Chemistry, 85, 47–56. https://doi.org/10.1016/j.trac.2016.05.009
Sargis, R. M., Heindel, J. J., & Padmanabhan, V. (2019). Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00033
Sensoy, E. (2024). Comparison of the effect of Sunset yellow on the stomach and small intestine of developmental period of mice. Heliyon, 10(11), e31998. https://doi.org/10.1016/j.heliyon.2024.e31998
Sensoy, E. (2025). The potential histopathological effect of Sunset Yellow FCF on lungs and hearts of developing mice. British Food Journal. https://doi.org/10.1108/BFJ-06-2024-0580
Sevastre, A.-S., Baloi, C., Alexandru, O., Tataranu, L. G., Popescu, O. S., & Dricu, A. (2023). The effect of Azo-dyes on glioblastoma cells in vitro. Saudi Journal of Biological Sciences, 30(3), 103599. https://doi.org/10.1016/j.sjbs.2023.103599
Shohel, M. A. et al. (2024). Natural Diabetes Treatment with Litchi Seeds Extract In Vivo. Journal of Angiotherapy, 8(7), 1–13. https://doi.org/10.25163/angiotherapy.879738
Singh, S., Yadav, S., Cavallo, C., Mourya, D., Singh, I., Kumar, V., Shukla, S., Shukla, P., Chaudhary, R., Maurya, G. P., Müller, R. L. J., Rohde, L., Mishra, A., Wolkenhauer, O., Gupta, S., & Tripathi, A. (2024). Sunset Yellow protects against oxidative damage and exhibits chemoprevention in chemically induced skin cancer model. Npj Systems Biology and Applications, 10(1), 23. https://doi.org/10.1038/s41540-024-00349-1
Smith, L. A., Craven, D. M., Ho, A. N., Glenny, E. M., Rezeli, E. T., Carson, M. S., Paules, E. M., Fay, M., Cozzo, A. J., Hursting, S. D., & Coleman, M. F. (2025). Weight Loss Reverses the Effects of Aging and Obesity on Mammary Tumor Immunosuppression and Progression. Cancer Prevention Research, OF1–OF11. https://doi.org/10.1158/1940-6207.CAPR-24-0514
T M Tawabul Islam, A. K. T. I. S. M. A. S. S. A. R. N. C. M. I. A. S. (2024). Chronic Toxic Effects of Chocolate Brown HT Dye on Hepatorenal Functions In Vivo. Journal of Angiotherapy, 8(7), 1–11. https://doi.org/10.25163/angiotherapy.879742
Tabernilla, A., dos Santos Rodrigues, B., Pieters, A., Caufriez, A., Leroy, K., Van Campenhout, R., Cooreman, A., Gomes, A. R., Arnesdotter, E., Gijbels, E., & Vinken, M. (2021). In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. International Journal of Molecular Sciences, 22(9), 5038. https://doi.org/10.3390/ijms22095038
Thanh, D. D., Bich-Ngoc, N., Paques, C., Christian, A., Herkenne, S., Struman, I., & Muller, M. (2024). The food dye Tartrazine disrupts vascular formation both in zebrafish larvae and in human primary endothelial cells. Scientific Reports, 14(1), 30367. https://doi.org/10.1038/s41598-024-82076-5
Tufael, Kar, A., Rashid, M. H. O., Sunny, A. R., Raposo, A., Islam, M. S., Hussain, M. A., Hussen, M. A., Han, H., Coutinho, H. D. M., Ullah, M. S., & Rahman, M. M. (2024). Diagnostic efficacy of tumor biomarkers AFP, CA19-9, and CEA in Hepatocellular carcinoma patients. Journal of Angiotherapy, 8(4), Article 9513. https://doi.org/10.25163/angiotherapy.849513
Tufael, Debnath, A., Siddique, M. A. B., Nath, N. D. (2023). "Microbial Therapeutics in Cancer Treatment - Challenges and Opportunities in Breast Cancer Management", Clinical Epidemiology & Public Health, 1(1),1-7,10277 https://doi.org/10.25163/health.1110277
Vashishat, A., Patel, P., Das Gupta, G., & Das Kurmi, B. (2024). Alternatives of Animal Models for Biomedical Research: a Comprehensive Review of Modern Approaches. Stem Cell Reviews and Reports, 20(4), 881–899. https://doi.org/10.1007/s12015-024-10701-x
Wakade, G., Lin, S., Saha, P., Kumari, U., & Daniell, H. (2023). Abatement of microfibre pollution and detoxification of textile dye – Indigo by engineered plant enzymes. Plant Biotechnology Journal, 21(2), 302–316. https://doi.org/10.1111/pbi.13942
Wang, J., Zhang, Q., Li, Y., Pan, X., Shan, Y., & Zhang, J. (2024). Remodeling the tumor microenvironment by vascular normalization and GSH-depletion for augmenting tumor immunotherapy. Chinese Chemical Letters, 35(2), 108746. https://doi.org/10.1016/j.cclet.2023.108746
Yang, X., Liu, M., Jiang, K., Wang, B., & Wang, L. (2024). Metabolomics and transcriptomics analysis reveals the enhancement of growth, anti-oxidative stress and immunity by (-)-epigallocatechin-3-gallate in Litopenaeus vannamei. Fish & Shellfish Immunology, 155, 110025. https://doi.org/10.1016/j.fsi.2024.110025
Zingue, S., Mindang, E. L. N., Awounfack, F. C., Kalgonbe, A. Y., Kada, M. M., Njamen, D., & Ndinteh, D. T. (2021). Oral administration of tartrazine (E102) accelerates the incidence and the development of 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in rats. BMC Complementary Medicine and Therapies, 21(1), 303. https://doi.org/10.1186/s12906-021-03490-0