Complexation of Andrographolide, Mirabegron and Suvorexant and Bioactivity Study of the Complexes
Rajia Sultana and Md. Zakir Sultana*
Microbial Bioactives 2(1) 076-081 https://doi.org/10.25163/microbbioacts.21010A0410130219
Submitted: 04 July 2018 Revised: 06 February 2019 Published: 13 February 2019
Abstract
Background: There are many ways to synthesize new drug molecules for more potent therapeutic efficacy with minimum side effects. The drugs may exhibit therapeutic effects independently or may interfere with each other. Method: In this study, new drug molecules were synthesized by drug-drug complexation way according to the calculated w/w ratio. The complexes were prepared by solid-mixing method using pestle and mortar by adding equal amount of drugs to each other, then warmed at 50 °C for 4 hours and left at room temperature for overnight to obtain new drug complexes. The new drug complexes were distinguished by Differential Scanning Calorimetry(DSC) and Fourier-transform infrared spectroscopy (FTIR) with the biological activity. Results: The melting endothermic peaks of andrographolide-suvorexant, andrographolide-mirabegron, and suvorexant-mirabegroncomplexes were found at 221.02 °C, 189.49 °C and 115.78 °C, respectively which were different from the melting endotherms of andrographolide, suvorexant and mirabegron at 230.87 °C, 127.09 °C and 140.40 °C, respectively. The FTIR spectra of the formed complexes showed the similar characteristics of the standard drugs. The cytotoxic effect of the drug complexes on HeLa cell line were higher (10% less survived HeLa cell, i.e. > 90 % cell died) than the precursor drug molecules. Conclusion: Our research findings that three new drug compounds were synthesized by complexation way which could be due to interaction of andrographolide and suvorexant; andrographolide and mirabegron, and suvorexant and mirabegron.
Keywords: Drug, Drug-drug Interaction, Synthesis, Differential Scanning Calorimetry, FTIR, Cytotoxicity, Andrographolide, Suvorexant and Mirabegron.
References
Baxter, C. A., Cleator, E., Brands, K. M. J., Edwards, J. S., Reamer, R. A., Sheen, F. J., … Wallace, D. J. (2011). The First Large-Scale Synthesis of MK-4305: A Dual Orexin Receptor Antagonist for the Treatment of Sleep Disorder. Organic Process Research & Development, 15(2), 367–375.
https://doi.org/10.1021/op1002853
Cáceres, D. D., Hancke, J. L., Burgos, R. A., & Wikman, G. K. (1997). Prevention of common colds with Andrographis paniculata dried extract. A Pilot double blind trial. Phytomedicine, 4(2), 101–104.
https://doi.org/10.1016/S0944-7113(97)80051-7
Coleman, P. J., Gotter, A. L., Herring, W. J., Winrow, C. J., & Renger, J. J. (2017). The Discovery of Suvorexant, the First Orexin Receptor Drug for Insomnia. Annual Review of Pharmacology and Toxicology, 57(1), 509–533.
https://doi.org/10.1146/annurev-pharmtox-010716-104837
Deng, W. L. (1978). Preliminary studies on the pharmacology of the Andrographis product dihydroandrographolide sodium succinate. Newsletter Chinese Herbal Medicine, 8, 26–28.
Ferdous, U. T., Shishir, M. A., Khan, S. N., & Hoq, M. M. (2018). Bacillus spp.: Attractive Sources of Anti-cancer and Anti-proliferative Biomolecules. Microbial Bioactives, 1(1), E033–E045.
https://doi.org/10.25163/microbbioacts.11005B0408130818
Goodman, L. S. (1996). Goodman and Gilman’s the pharmacological basis of therapeutics (Vol. 1549). McGraw-Hill New York.
Jacobson, L. H., Callander, G. E., & Hoyer, D. (2014). Suvorexant for the treatment of insomnia. Expert Review of Clinical Pharmacology, 7(6), 711–730.
https://doi.org/10.1586/17512433.2014.966813
Jarukamjorn, K., & Nemoto, N. (2008). Pharmacological Aspects of Andrographis paniculata on Health and Its Major Diterpenoid Constituent Andrographolide. Journal of Health Science, 54(4), 370–381.
https://doi.org/10.1248/jhs.54.370
Mishra, S. K., Sangwan, N. S., & Sangwan, R. S. (2007). Phcog Rev.: Plant Review Andrographis paniculata (Kalmegh): A Review. Pharmacognosy Reviews, 1(2), 283–298.
Mohana, S. J., & Umarani, V. (2016). Isolation and Characterisation of Andrographolide from Andrographis Paniculata. World Journal of Pharmacy and Pharmaceutical Sciences, 5(9), 1954–1961.
Nanduri, S., Nyavanandi, V. K., Sanjeeva Rao Thunuguntla, S., Kasu, S., Pallerla, M. K., Sai Ram, P., … Akella, V. (2004). Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorganic and Medicinal Chemistry Letters.
https://doi.org/10.1016/j.bmcl.2004.06.090
Patal, D. A., & Patal, D. J. (2018). Physicochemical characterization and in vitro dissolution enhancement of Mirabegron using solid dispersion method. World Journal of Pharmacy and Pharmaceutical Sciences, 7(5), 973–991.
Patel, K. V., Aspesi, A. V., & Evoy, K. E. (2015). Suvorexant. Annals of Pharmacotherapy, 49(4), 477–483.
https://doi.org/10.1177/1060028015570467
Rajani, M., Shrivastava, N., & Ravishankara, M. N. (2000). A rapid method for isolation of andrographolide from andrographis paniculata nees (kalmegh). Pharmaceutical Biology, 38(3), 204–9.
https://doi.org/10.1076/1388-0209(200007)3831-SFT204
Saha, S., Begum, R., Rahman, A., Sultan, M. Z., Amran, M. S., & Hossain, M. A. (2015). Evaluation of in vitro Interaction of Metformin with Ibuprofen in Aqueous Medium. Bangladesh Pharmaceutical Journal, 16(2), 189–194.
https://doi.org/10.3329/bpj.v16i2.22303
Saha, S., Begum, R., Sultan, M. Z., Amjad, F. M., Amran, M. S., & Hossain, M. A. (2013). In vitro Interaction of Metformin with Diclofenac in Aqueous Medium. Dhaka University Journal of Pharmaceutical Sciences, 11(2), 101–106.
https://doi.org/10.3329/dujps.v11i2.14555
Sajeeb, B., Kumar, U., Halder, S., & Bachar, S. C. (2015). Identification and Quantification of Andrographolide from Andrographis paniculata (Burm. f.) Wall. ex Nees by RP-HPLC Method and Standardization of its Market Preparations. Dhaka University Journal of Pharmaceutical Sciences, 14(1), 71–78.
https://doi.org/10.3329/dujps.v14i1.23738
Sultana, N., Arayne, M. S., Rizvi, S. B. S., Haroon, U., & Mesaik, M. A. (2013). Synthesis, spectroscopic, and biological evaluation of some levofloxacin metal complexes. Medicinal Chemistry Research.
https://doi.org/10.1007/s00044-012-0132-9
Sutton, E. L. (2015). Profile of suvorexant in the management of insomnia. Drug Design, Development and Therapy, 9, 6035–42.
https://doi.org/10.2147/DDDT.S73224
Takasu, T., Ukai, M., Sato, S., Matsui, T., Nagase, I., Maruyama, T., … Yamaguchi, O. (2007). Effect of (R)-2-(2-aminothiazol-4-yl)-4’-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. The Journal of Pharmacology and Experimental Therapeutics, 321(2), 642–7.
https://doi.org/10.1124/jpet.106.115840
Takusagawa, S., Miyashita, A., Iwatsubo, T., & Usui, T. (2012). In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β3-adrenoceptor agonist. Xenobiotica, 42(12), 1187–1196.
https://doi.org/10.3109/00498254.2012.700140
Teresa Carr. (2016). FDA Fields Complaints on Sleeping Pill Suvorexant. Consumer Reports.
Vasanthabharathi, V., & Jayalakshmi, S. (2018). Bioactive potential from Marine sponge Callyspongia diffusa associated Pseudomonus fluorescens BCPBMS-1 and Penicillum citrinum. Microbial Bioactives, 1(1), 8–13.
https://doi.org/10.25163/microbbioacts.11002A2221300318
WHO media center. (2007). WHO monographs on selected medicinal plants (Vol. 3). Geneve: World Health Organization. Retrieved from http://www.who.int/medicines/areas/traditional/
Wu, Y. S., Ngai, S. C., Goh, B. H., Chan, K. G., Lee, L. H., & Chuah, L. H. (2017). Anticancer activities of surfactin potential application of nanotechnology assisted surfactin delivery. Frontiers in Pharmacology, 8(OCT), 1–22.
https://doi.org/10.3389/fphar.2017.00761
View Dimensions
View Altmetric
Save
Citation
View
Share