Biopharmaceuticals and medical sciences | Online ISSN 3064-9226
REVIEWS   (Open Access)

Nanomedicine in Cancer Therapy: From Preclinical Promise to Clinical Applications

Md Sakil Amin1*, Azizur Rahman2, Amatun Noor Prapty3, Abdullah Al Numan4, Md Moshiur Rahman5, Bulbul Ahmed6, Md Mahedi Hasan Shabuj6, Syeda Anjuman Ara Aunni6

+ Author Affiliations

Journal of Precision Biosciences 6(1) 1-14 https://doi.org/10.25163/biosciences.6110064

Submitted: 19 May 2024  Revised: 13 July 2024  Published: 14 July 2024 

Abstract

Background: Cancer continues to be a predominant worldwide health problem, characterized by rising incidence and fatality rates. Conventional therapies, including chemotherapy, gene therapy, and immunotherapy, exhibit limitations such as inadequate targeting, drug degradation, and unwanted effects. Nanomedicine has intriguing methods to address these difficulties by enhancing drug delivery and targeting.  Methods: This review examines the incorporation of nanomedicine in cancer treatments, emphasizing chemotherapy, gene therapy, and immunotherapy. We examine the application of nanoparticulate delivery systems (NDSs) to improve drug delivery, augment tumor targeting, and minimize adverse effects. Numerous nanomaterials, including organic, inorganic, and composite nanoparticles, are analyzed for their potential to overcome the constraints of traditional therapies. Results: Nanomedicine has shown a lot of promise in improving the pharmacokinetics of chemotherapeutic drugs, making gene delivery more effective, and boosting immune responses in cancer immunotherapy. Pharmaceuticals can be delivered precisely and safely with nanoparticles, which solve problems like poor solubility, instability, and poor cell absorption in neoplasms. Conclusion: The use of nanomedicine in oncological treatment demonstrates significant promise for enhancing therapeutic results. Even though there are still issues with turning preclinical findings into clinical applications, nanotechnology is making steady progress that will enhance the effectiveness of chemotherapy, gene therapy, and immunotherapy, opening new ways to customize cancer treatment.

Keywords: Nanomedicine, Cancer Immunotherapy, Targeted Drug Delivery, Nanocarriers, Cancer Vaccines

References

Ahn, J., Lee, H., & Kim, W. J. (2020). Stimuli-responsive DNA nanostructures for biomedical applications. Theranostics, 10(10), 3260-3277. https://doi.org/10.7150/thno.41926

Akeno, T., Zhao, C., & Nakanishi, N. (2015). Safety and efficacy of mRNA-based therapies for cancer treatment. Molecular Therapy, 23(3), 572–584. https://doi.org/10.1038/mt.2015.19

Akgöl, S., Kocabas, D. S., Türeli, A. E., & Keskin, D. (2021). Composite nanomaterials for advanced drug delivery systems. Journal of Drug Delivery Science and Technology, 62, 102404. https://doi.org/10.1016/j.jddst.2021.102404

Álvarez-Garcia, V., Tawil, Y., Wise, H. M., Leslie, N. R., & Endicott, J. A. (2019). Mechanisms of PTEN loss in cancer: It’s all about diversity. Nature Reviews Cancer, 19(2), 87–97. https://doi.org/10.1038/s41568-018-0115-6

Babu, A., et al. (2017). Advanced nanocarriers for the delivery of siRNA in cancer therapy. Journal of Nanomedicine, 9(4), 123–135.

Bakrania, A., Tufael, J., & Al-Jameel, W. (2022). Advances in targeted nano-delivery systems for hepatocellular carcinoma. Journal of Nanomedicine Research, 8(3), 120–135.

Bakrania, A., Zheng, G., & Bhat, M. (2022). Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics, 14(1), 41. https://doi.org/10.3390/pharmaceutics14010041

Bhushan, B., Casperson, L. W., & Gupta, M. C. (2017). Nanomaterials for cancer therapy: An overview. Journal of Nanotechnology, 9(2), 123–145. https://doi.org/10.1016/j.nano.2017.03.004

Billingsley, M. M., Riley, R. S., Day, E. S. (2020). Antigen-specific nanoparticles for improving cancer immunotherapy outcomes. Cancer Nanotechnology, 11(1), 3–14.

Cao, W., Zhang, X., Wang, H., & Chen, L. (2020). Controlled drug release from nanomaterials responsive to endogenous and exogenous stimuli. Advanced Drug Delivery Reviews, 152, 20–41. https://doi.org/10.1016/j.addr.2019.12.015

Chakraborti, S., & Chakrabarti, P. (2019). Human ferritin: Structure, function, and clinical significance. Critical Reviews in Biotechnology, 39(5), 564-576.

Chen, D., Ding, C., Yang, S., Li, L., Qin, M., Du, D., & Lin, Y. (2020). Polymeric nanoparticles for lymphatic-targeted drug delivery and cancer immunotherapy. Advanced Drug Delivery Reviews, 163, 69–89.

Chen, Q., Gu, Z., Liu, J., & Wei, J. (2018). Sustained immune activation by clay-based nanoparticles for cancer immunotherapy. Nature Nanotechnology, 13, 198–206.

Collins, M., & Thrasher, A. J. (2015). Gene therapy: Progress and prospects. Nature Reviews Genetics, 16(10), 541–555. https://doi.org/10.1038/nrg3971

Cremolini, C., et al. (2021). Combination strategies in immunotherapy: Overcoming resistance mechanisms. Cancer Immunotherapy Reviews, 8(2), 345–362.

Ding, L., et al. (2021). Biologically inspired nanostructures for mRNA delivery: Innovations and perspectives. Nano Today, 35, 100985.

Evans, C. G., & Winfree, E. (2017). DNA self-assembly with directionality and kinetic barriers: Creating programmable higher-order structures. Journal of Chemical Physics, 147(9), 094905. https://doi.org/10.1063/1.4997323

Evans, S. S., Gonnerman, E. A., Knutson, K. L., & Huntoon, C. J. (2018). Targeting immune organs for cancer vaccine delivery. Nature Reviews Drug Discovery, 17(9), 611–631.

Forterra, R., et al. (2020). Polymer-lipid hybrid nanocarriers: A new frontier in gene delivery systems. Biomaterials Research, 24, 123–134.

Galstyan, A., et al. (2019). Poly-β-L-malic acid biopolymer scaffolds for immune checkpoint inhibitors in glioblastoma. Science Advances in Oncology, 5(9), 2341–2352.

Goswami, N., Xie, J., & Zhang, J. (2018). Transferrin-templated copper nanoclusters for targeted drug delivery and bioimaging. ACS Applied Materials & Interfaces, 10(7), 567-578.

Gote, V., Xu, X., Pal, D., & Jambhekar, S. S. (2021). Nanoparticulate drug delivery systems: An overview and applications. Journal of Controlled Release, 336, 220–239. https://doi.org/10.1016/j.jconrel.2021.06.025

Guan, Y., Zhu, Y., Zhang, M., et al. (2021). Recent advances in DNA-based drug delivery systems. Advanced Drug Delivery Reviews, 177, 113947. https://doi.org/10.1016/j.addr.2021.113947

Gutierrez, P. M., Altieri, A., & Johnson, L. L. (1992). Gene therapy and its applications in oncology. Journal of Clinical Oncology, 10(4), 693–704.

Halley, P. D., Lucas, C. R., McWilliams, E. M., et al. (2016). Mechanically stiff DNA nanoribbons for cancer therapy. Nature Communications, 7, 11259. https://doi.org/10.1038/ncomms11259

Han, X., et al. (2021). siRNA nanocarriers for cancer therapy: Advancements and challenges. Molecular Cancer Research, 19(6), 678–689.

Heo, M. B., & Lim, Y. T. (2014). Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of specific immune cells. Biomaterials, 35(1), 590–600.

Huang, R., Jiang, W., Wang, Q., & Yu, X. (2020). Nanoparticle-mediated CAR-T cell therapy in cancer treatment. Advanced Functional Materials, 30(48), 2006091.

Igarashi, T., & Sasada, T. (2020). Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. Frontiers in Immunology, 11, 2281.

Iqbal, S., Ullah, M., Khan, M. A., & Khan, A. U. (2021). Proteins as nanocarriers for therapeutic agents. International Journal of Nanomedicine, 16, 2435-2450.

Islam, M. A., Reesor, E. K. G., Xu, Y., Zope, H. R., & Zetter, B. R. (2018). Polymer-lipid hybrid nanoparticles for mRNA delivery: Overcoming barriers to delivery of genetic drugs. Journal of Controlled Release, 278, 35–45. https://doi.org/10.1016/j.jconrel.2018.03.032

Ji, D., Liu, X., Li, Z., et al. (2021). DNA nanostructures as nanocarriers for drug delivery in cancer therapy. ACS Nano, 15(7), 11941–11956. https://doi.org/10.1021/acsnano.1c01546

Kinnear, C., Moore, T. L., Rodriguez-Lorenzo, L., Rothen-Rutishauser, B., & Petri-Fink, A. (2017). Form follows function: Nanoparticle shape and its implications for nanomedicine. Chemical Reviews, 117(17), 11476–11521. https://doi.org/10.1021/acs.chemrev.7b00194

Kong, Y., Xiong, S., Wei, J., & Zhan, X. (2019). Redox-responsive nanoparticles for mRNA delivery: Activation of p53 pathway in cancer cells. ACS Nano, 13(4), 5159–5169. https://doi.org/10.1021/acsnano.9b00560

Krishn, P., et al. (2022). Advances in siRNA-based therapies for oncogenic silencing. Cancer Research and Therapy, 12(7), 543–556.

Lacroix, L., Messaoudi, K., André, F., & Régnier, E. (2020). p53 as a therapeutic target in cancer: From bench to bedside. Clinical Cancer Research, 26(3), 495–500. https://doi.org/10.1158/1078-0432.CCR-19-1040

Lau, K. L., & Sleiman, H. F. (2016). DNA nanostructures: Smart carriers for drug delivery. Chemical Society Reviews, 45(18), 3786–3804. https://doi.org/10.1039/C5CS00527H

Lee, C. H., & Muller, W. J. (2010). Oncogenes and tumor suppressor genes: A double-edged sword in cancer therapy. Nature Reviews Cancer, 10(6), 455–469. https://doi.org/10.1038/nrc2868

Li, J., Zhao, X., Cheng, Y., & Li, H. (2019). Development of pH-sensitive ApoB-100/oleic acid-doxorubicin nanoparticles for improved targeting of breast cancer. Journal of Drug Delivery Science and Technology, 51, 678–684. https://doi.org/10.1016/j.jddst.2019.02.008

Li, S., Liu, X., Zhang, J., et al. (2020). Design and applications of DNA origami nanocarriers for cancer therapy. Biotechnology Advances, 44, 107594. https://doi.org/10.1016/j.biotechadv.2020.107594

Li, Y., Sun, Z., Cui, X., Yang, J., & Xu, Y. (2021). Multifunctional nanoplatforms in cancer therapy: Diagnostic and therapeutic strategies. Bioactive Materials, 6(9), 2858–2872. https://doi.org/10.1016/j.bioactmat.2021.01.028

Libutti, S. K. (2019). New paradigms in cancer therapy: A review of novel therapeutic modalities. Clinical Cancer Advances, 5(1), 45–60.

Liu, D., Gao, X., Gu, G., & Fang, T. (2017). Nanomedicine and tumor targeting: Design considerations and approaches. Nature Nanotechnology, 12(7), 637–647. https://doi.org/10.1038/nnano.2017.89

Liu, J., Chang, C., & Wu, H. (2020). Nanomedicine in the development of cancer vaccines. Journal of Controlled Release, 325, 124–142.

Liu, J., Li, S., Wang, W., et al. (2018). Multiscale construction of DNA nanocarriers with multifunctional design for targeted cancer therapy. Nanoscale, 10(42), 19668–19676. https://doi.org/10.1039/C8NR04975A

Liu, X., Liu, X., Yu, S., et al. (2018). DNA nanocarriers with redox-sensitive linkages for tumor-targeted drug delivery. Nano Letters, 18(11), 7224–7232. https://doi.org/10.1021/acs.nanolett.8b03145

Liu, Y., et al. (2019). Dual-responsive liposomes with PD-L1 inhibitors and low-dose doxorubicin for melanoma treatment. Journal of Clinical Oncology, 38(12), 456–465.

Liu, Y., Wang, X., Li, J., & Zhang, T. (2022). Stimuli-responsive nanomaterials for precise cancer therapy. Materials Today, 55, 86–102. https://doi.org/10.1016/j.mattod.2022.01.004

Lo, S. H., Yu, Y. H., & Tai, C. M. (2002). LDL-bound doxorubicin: A novel approach to cancer therapy with reduced side effects. Cancer Research, 62(14), 4090–4095.

Lu, C., Sun, J., Yang, X., et al. (2018). Enzyme-responsive DNA nanostructures for precise drug delivery. Advanced Healthcare Materials, 7(19), 1800355. https://doi.org/10.1002/adhm.201800355

Lv, H., Zhang, S., Wang, B., et al. (2021). DNA nanotechnology: Applications in cancer diagnosis and therapy. Bioconjugate Chemistry, 32(1), 2-15. https://doi.org/10.1021/acs.bioconjchem.0c00613

Ma, W., et al. (2019). Tumor vaccines in modern immunotherapy. Immunotherapy Frontiers, 11(3), 234–245.

Martínez-López, A. L., Encinas-Basurto, D., & Serrano-Luján, L. (2020). Advances in protein-based nanocarriers for drug delivery. Nanomedicine, 15(9), 791-807.

Md Tahsin Salam, Moushumi Afroza Mou et al. (2024). Assessment of Lipid Profile in Hepatocellular Carcinoma Patients: A Prospective Study In Bangladesh, Journal of Primeasia, 5(1), 1-8, 9787

Meir, A., et al. (2017). αPD-L1-conjugated gold nanoparticles for enhanced checkpoint blockade therapy. Nanomedicine Advances, 22(5), 412–421.

Mohsen, M. G., & Kool, E. T. (2016). The discovery of rolling circle amplification and its use in nucleic acid detection. Accounts of Chemical Research, 49(12), 2540–2550. https://doi.org/10.1021/acs.accounts.6b00445

Musetti, S. N., & Huang, L. (2018). Nanoparticle-mediated delivery for cancer immunotherapy. Cancer Letters, 458, 45–53.

Navya, P. N., Daima, H. K., & Agnihotri, N. (2019). Current trends and challenges in cancer management and therapy using biological nanomaterials. Advances in Colloid and Interface Science, 270, 147–167. https://doi.org/10.1016/j.cis.2019.05.002

Olden, B. R., Cheng, Y., Yu, J. Q., & Pun, S. H. (2018). Nanotechnology for T cell engineering. Nano Letters, 18(2), 1205–1212.

Pan, W., et al. (2019). Near-infrared-responsive nanocarriers for CRISPR/Cas9 gene editing. Nano Research Frontiers, 14(4), 321–334.

Parayath, N. N., Parikh, A., & Stephan, S. B. (2020). mRNA-based nanomedicine for CAR-T cell therapy. Molecular Therapy, 28(3), 964–973.

Pham, K., Luo, X., Bell, D., & Jin, L. (2018). Tumor immune evasion mechanisms and CAR-T cell development. Frontiers in Oncology, 8, 144.

Qin, Z., Wang, X., & Ding, C. (2021). Click-chemistry-based active lymphatic targeting in cancer immunotherapy. Advanced Therapeutics, 4(6), 2000247.

Que, S., Ma, W., & Yu, S. (2018). Novel strategies for mRNA delivery in cancer immunotherapy. Molecular Therapy, 26(7), 1783–1790. https://doi.org/10.1016/j.ymthe.2018.05.019

Rafii, T., et al. (2022). Advancements in CRISPR/Cas9 gene editing for cancer therapy. Molecular Cancer Therapeutics, 21(2), 876–885.

Rahman, M. M., Tasnim, M., Li, M., Devadas, H., & Mamoon, M. Y. (2024). Necrotizing pancreatitis due to very high triglyceride level: A case report. Cureus, 16(9), e69761. https://doi.org/10.7759/cureus.69761

Rahman, S., Alam, M. F., & Khan, S. H. (2024). Nanotechnology in metabolic disorders: A new therapeutic perspective. Advanced Biomedical Research, 12(4), 210–225.

Ramezani, H., & Dietz, H. (2020). Building machines with DNA molecules. Nature Reviews Genetics, 21(1), 5–26. https://doi.org/10.1038/s41576-019-0140-2

Raza, A., Hayat, U., & Rahim, A. (2019). Nanoparticulate delivery systems in cancer therapy: Recent advancements. International Journal of Pharmaceutical Sciences, 25(1), 5–20.

Raza, A., Yahya, R., & Alqadhi, S. (2022). Overcoming tumor resistance with nanomedicine. Journal of Cancer Research, 14(7), 512–530.

Riley, R. S., June, C. H., & Langer, R. (2019). Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 18(3), 175–196. https://doi.org/10.1038/s41573-018-0006-z

Rosenblum, D., et al. (2020). Lipid nanoparticles for CRISPR/Cas9 delivery in oncological applications. Nanomedicine Today, 36, 101019.

Rui, M., Fan, Z., Liu, Y., & Zhang, Y. (2017). Co-delivery of paclitaxel and doxorubicin using rHDL nanoparticles for enhanced chemotherapy synergy. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 1655–1665. https://doi.org/10.1016/j.nano.2016.10.013

Rui, M., Zuo, C., & Guo, R. (2019). Nanotechnology-based gene therapy for cancer: Opportunities and challenges. Advanced Drug Delivery Reviews, 138, 11–23. https://doi.org/10.1016/j.addr.2018.11.009

Sahin, U., & Türeci, Ö. (2018). Chimeric antigen receptor T cell therapy and tumor vaccines. Immunotherapy Horizons, 6(7), 98–112.

Salam, A., Hashim, N., & Bilal, M. (2024). Nanomedicine in combating ICU antibiotic resistance. Journal of Intensive Care Medicine, 39(1), 12–25.

Salam, R., Patel, S. R., & Kaur, J. (2024). Lipoproteins as a novel drug delivery system: From natural carriers to synthetic designs. Journal of Pharmaceutical Sciences, 113(1), 45–57.

Salam, T. M., Bari, F. K., et al. (2024). Emergence of antibiotic-resistant infections in ICU patients. Journal of Angiotherapy, 8(5), 1–9. https://doi.org/10.25163/angiotherapy.859560

Saxena, M., van der Burg, S. H., Melief, C. J. M., & Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nature Reviews Cancer, 21, 360–378.

Seeman, N. C. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99(2), 237-247. https://doi.org/10.1016/0022-5193(82)90002-9

Shen, J., et al. (2020). siRNA in overcoming drug resistance in cancer treatment. Pharmacological Reviews, 72(8), 1447–1456.

Shi, X., et al. (2020). DNA nanoflowers for targeted CRISPR/Cas9 delivery using miRNA sequence recognition. Biomaterials, 23(11), 451–463.

Shi, Y., et al. (2019). siRNA-based therapies for cancer: Current progress and future prospects. Oncology Research Reviews, 45(3), 789–804.

Smith, C. L., Wang, B., & Thomas, S. S. (2017). Polymer nanoparticles for CAR-T cell therapy in leukemia. ACS Nano, 11(5), 4822–4831.

Sobhani, N., Scaggiante, B., & Ranjbar, M. (2021). Nanoparticles for mRNA delivery: Opportunities and challenges. Pharmaceutics, 13(3), 491. https://doi.org/10.3390/pharmaceutics13030491

Song, S., Hu, J., Lu, X., & Cui, D. (2021). Ferritin nanocages for drug delivery: Recent developments and applications. Theranostics, 11(3), 1235-1250.

Subhan, M. A., & Torchilin, V. P. (2019). Advances in nanocarriers for siRNA delivery. Expert Opinion on Drug Delivery, 16(4), 383–393.

Sukumar, M., et al. (2020). Triple gene suicide therapy using PLGA nanoparticles with hepatocyte-targeting peptides. Gene Therapy Advances, 34(2), 145–159.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tan, A., Porazinski, S., & Brindle, K. (2020). Immunotherapy: Expanding the cancer treatment arsenal. Annual Review of Medicine, 71(1), 321–334. https://doi.org/10.1146/annurev-med-070319-115456

Tang, X., Liu, Z., Wu, H., & Wang, L. (2018). T cell receptor-responsive nanogels for CAR-T cell therapy. Nature Biomedical Engineering, 2(6), 414–421.

Tao, A., et al. (2021). Gold nanoparticles in CRISPR/Cas9 delivery systems for cancer therapy. Nanotechnology Reviews, 40(5), 670–681.

Tufael, J., Salam, A., & Bakrania, A. (2024). Targeted therapy in hepatocellular carcinoma: The role of nanomedicine. Liver Research Advances, 6(2), 89–102.

Tufael, M. M. R. (2024). Combined biomarkers for early diagnosis of hepatocellular carcinoma. Journal of Angiotherapy, 8(5), 1–12. https://doi.org/10.25163/angiotherapy.859665

Vaddepally, R., et al. (2020). Immune checkpoint inhibitors in cancer therapy: Mechanisms and challenges. Cancer Therapy and Immunology, 18(4), 345–360.

Veroniaina, H., Rakotoarivelo, N., & Andriamialinoro, F. (2021). Recombinant ferritin nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology, 62, 102369.

Wang, C.-S., Peng, S.-Y., & Hsieh, P.-C. (2021). Inorganic nanomaterials for drug delivery: Advantages and challenges. Materials Today Advances, 9, 100118. https://doi.org/10.1016/j.mtadv.2020.100118

Wang, J., Sun, Y., & Xu, X. (2021). Biological nanomaterials for drug delivery and targeting in cancer therapy. Nature Reviews Materials, 6, 118–137. https://doi.org/10.1038/s41578-020-00253-8

Wang, T., Zhang, Y., Wang, W., & Sun, S. (2014). Recombinant HDL nanoparticles for targeted delivery of doxorubicin in cancer therapy. Biomaterials, 35(1), 7988–7996. https://doi.org/10.1016/j.biomaterials.2014.06.010

Wang, X., et al. (2021). DNA nanodevices for co-delivery of siRNA and doxorubicin. Nanomedicine Research, 19(4), 456–472.

Wang, Z., et al. (2021). pH-sensitive nanocarriers for CRISPR/Cas9 and epirubicin co-delivery. Journal of Molecular Medicine, 12(6), 788–804.

Wei, J., Wang, Q., & Zhao, Y. (2020). Transferrin-binding peptide conjugates enhance drug delivery and targeting in cancer therapy. Acta Biomaterialia, 103, 358-372.

Wei, Y., Chen, J., & Zhang, J. (2021). Advances in nanomaterial-mediated delivery of chemotherapeutic drugs. Chemical Engineering Journal, 405, 126692. https://doi.org/10.1016/j.cej.2020.126692

Wu, Y., Zhang, J., Zhou, T., et al. (2019). Rational design of DNA-based drug delivery vehicles for cancer therapy. Chemical Reviews, 119(18), 11069–11120. https://doi.org/10.1021/acs.chemrev.9b00236

Xu, W., Zhang, H., & Liu, Y. (2021). DNA nanotechnology in precision medicine: Applications in drug delivery. Journal of Controlled Release, 337, 140–150. https://doi.org/10.1016/j.jconrel.2021.06.030

Yahya, R., & Alqadhi, S. (2021). Advances in nanoparticulate delivery systems for cancer therapy. Journal of Pharmaceutical Innovations, 17(4), 567–580.

Yang, L., Chen, Y., & Wang, Q. (2020). pH-sensitive bovine serum albumin nanoparticles for tumor-targeted drug delivery. International Journal of Pharmaceutics, 587, 119670.

Yang, X., Feng, L., Shi, X., & Liu, Z. (2021). Nanoparticle-based therapeutic strategies for cancer treatment. Advanced Materials, 33(12), 2006364. https://doi.org/10.1002/adma.202006364

Yardley, D. A. (2013). Nab-paclitaxel mechanisms of action and delivery. Clinical Breast Cancer, 13(6), 349-356.

Yin, H., et al. (2020). Cationic liposomes as CRISPR/Cas9 delivery vehicles for targeted gene therapy. Advances in Nanomedicine, 25(8), 1101–1112.

Zhan, T., et al. (2019). Delivery challenges for CRISPR/Cas9 gene editing tools. Molecular Therapy Advances, 15(9), 503–519.

Zhang, D. Y., Zou, S., & Gao, Y. (2020). Organic nanomaterials in cancer treatment: Mechanisms and applications. Nano Today, 30, 100830. https://doi.org/10.1016/j.nantod.2019.100830

Zhang, G., Zhang, Z., et al. (2017). DNA nanocarriers for stimulus-responsive drug release in cancer therapy. ACS Nano, 11(8), 7482–7496. https://doi.org/10.1021/acsnano.7b02563

Zhang, J., Li, S., Liu, X., et al. (2021). DNA origami nanostructures for efficient drug delivery and therapy. Biomaterials, 271, 120737. https://doi.org/10.1016/j.biomaterials.2021.120737

Zhang, L., Zhou, T., & Lu, C. (2019). Applications of DNA nanotechnology in chemotherapy. Drug Delivery, 26(1), 203–218. https://doi.org/10.1080/10717544.2019.1583332

Zhang, Q., Guan, Y., et al. (2019). Aptamer-modified DNA nanoflowers for cancer cell targeting and drug delivery. ACS Applied Materials & Interfaces, 11(6), 5548–5556. https://doi.org/10.1021/acsami.8b19357

Zhang, S., et al. (2021). Innovations in CRISPR/Cas9 delivery for cancer treatment. Cancer Gene Therapy Reviews, 28(5), 345–364.

Zhang, Y., Chen, Y., & Luo, X. (2020). Abraxane: A novel formulation for improving paclitaxel delivery and reducing side effects. Journal of Controlled Release, 327, 183-193.

Zhang, Z., Chen, Y., & Chen, H. (2019). The role of nanomedicine in improving the stability of cancer vaccine components. Advanced Healthcare Materials, 8(6), 1900175.

Zhao, Z., Xu, W., Sun, M., et al. (2018). Programmable DNA-based nanocarriers for targeted drug delivery. ACS Applied Nano Materials, 1(6), 2485–2493. https://doi.org/10.1021/acsanm.8b00356

Zhu, G., Mei, L., Huang, L., & Yang, Y. (2017). Multifunctional nanomaterials for cancer therapy. Nature Reviews Materials, 2(5), 17011. https://doi.org/10.1038/natrevmats.2017.11

Zhu, X., Wu, Z., Feng, X., & Ma, J. (2020). Integrating diagnostic and therapeutic functionalities into a single nanoplatform. Accounts of Chemical Research, 53(10), 2136–2148. https://doi.org/10.1021/acs.accounts.0c00283

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



9
Save
0
Citation
121
View
1
Share