Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
RESEARCH ARTICLE   (Open Access)

Targeting mRNA G-quadruplexes with peptide nucleic acid conjugates to regulate gene expression in vivo

Zeljka Krpetic 1*, Andy Miah 1, Rosa Arrigo 1

+ Author Affiliations

Biosensors and Nanotheranostics 4(1) 1-8 https://doi.org/10.25163/biosensors.4110002

Submitted: 02 January 2025  Revised: 07 March 2025  Published: 08 March 2025 

5895.jpg?638753826687787889

Abstract

Background: Guanine-rich nucleic acids can fold into stable secondary structures known as G-quadruplexes (G-4) in the presence of cations. These structures are commonly found in the 5′-untranslated region (5′-UTR) of many genes, where they can regulate translation. The N-RAS proto-oncogene, which plays a critical role in neuroblastoma RAS viral RNA translation, contains an RNA G-quadruplex in its 5′-UTR, making it a potential target for therapeutic intervention. Methods: This study investigated the stabilization of the RNA G-quadruplex in the 5′-UTR of N-RAS using PNA1-Heterocycle-PNA2 conjugates. Biophysical techniques, including Circular Dichroism (CD) spectroscopy and Isothermal Titration Calorimetry (ITC), were employed to assess the binding affinity and stabilization effect of the conjugates on the RNA G-quadruplex. Additionally, in vitro translation assays were conducted to evaluate the impact of G-quadruplex stabilization on oncogenic protein expression. Results: The results demonstrated that PNA1-Heterocycle-PNA2 conjugates effectively stabilized the G-quadruplex by targeting both the quadruplex structure and adjacent single-stranded RNA regions with sequence specificity. CD spectroscopy confirmed the structural stabilization of the RNA G-quadruplex, while ITC analysis revealed strong binding interactions. Furthermore, in vitro assays showed a significant reduction in oncogenic protein expression upon G-quadruplex stabilization. Conclusion: This study highlights the potential of PNA-conjugates as therapeutic agents for gene modulation. By stabilizing the RNA G-quadruplex in the 5′-UTR of the N-RAS transcript, these conjugates can suppress oncogenic protein translation, offering a novel approach for targeted cancer therapy.

Keywords: G-quadruplex, RNA stability, peptide nucleic acid, gene regulation, oncogene translation

References

Abes, R., Arzumanov, A. A., Moulton, H. M., Abes, S., Ivanova, G. D., Iversen, P. L., Gait, M. J., & Lebleu, B. (2007). Cell-penetrating peptide-based delivery of oligonucleotides: An overview. Biochemical Society Transactions, 35, 775-779.

Alter, J., Sennoga, C. A., Lopes, D. M., Eckersley, R. J., & Wells, D. J. (2009). Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble-mediated in vivo gene transfer. Ultrasound in Medicine & Biology, 35, 976-984.

Balasubramanian, S., & Neidle, S. (2009). G-quadruplex nucleic acids as therapeutic targets. Nature Reviews Drug Discovery, 8(6), 478-489.

Biffi, G., Tannahill, D., McCafferty, J., & Balasubramanian, S. (2013). Quantitative visualization of DNA G-quadruplex structures in human cells. Nature Chemistry, 5(3), 182-186.

Borden, M., & Sirsi, S. (2009). Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 1(1-2), 3-17.

Bugaut, A., & Balasubramanian, S. (2012). 5’-UTR RNA G-quadruplexes: Translation regulation and targeting. Nucleic Acids Research, 40, 1-15. https://doi.org/10.1093/nar/gks1234

Bugaut, A., & Balasubramanian, S. (2012). 5′-UTR RNA G-quadruplexes: Translation regulation and targeting. Nucleic Acids Research, 40(11), 4727-4741.

Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., & Neidle, S. (2006). Quadruplex DNA: Sequence, topology, and structure. Nucleic Acids Research, 34(19), 5402-5415.

Chaudhuri, R., Lemos, B., & Tyagi, S. (2020). RNA G-quadruplexes and their potential as therapeutic targets. Nucleic Acids Research, 48(6), 2175–2186.

Chen, Y., Yang, D., & Chen, Y. (2018). Targeting oncogenic RNA G-quadruplex structures. Theranostics, 8(16), 4095-4106.

Di Antonio, M., McLuckie, K. I., Biffi, G., & Balasubramanian, S. (2020). Targeting RNA G-quadruplex structures with peptide nucleic acids. Angewandte Chemie International Edition, 59(5), 1680-1685.

Garg, T., Goyal, A. K., & Rath, G. (2018). Microbubbles: An evolving paradigm in therapeutics. Journal of Controlled Release, 279, 674-691.

Hänsel-Hertsch, R., Di Antonio, M., & Balasubramanian, S. (2017). DNA G-quadruplexes in the human genome: Detection, functions, and therapeutic potential. Nature Reviews Molecular Cell Biology, 18(5), 279-284.

Kumari, S., Bugaut, A., & Balasubramanian, S. (2008). Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5’ UTR of the NRAS proto-oncogene. Biochemistry, 47, 12664–12669. https://doi.org/10.1021/bi801365t

López-Méndez, B., García-López, A., & Cernaianu, A. (2016). Structural analysis of RNA G-quadruplexes in translation regulation. Journal of Biomolecular Structure and Dynamics, 34(2), 291–300.

Masiero, S., Trotta, R., Pieraccine, S., De Tito, S., Perone, R., Randazzo, A., & Spada, G. P. (2010). A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Organic & Biomolecular Chemistry, 8(12), 2683-2692. https://doi.org/10.1039/c001545a

Meguellati, K., Koripelly, G., & Ladame, S. (2012). DNA-templated synthesis of trimethine cyanine dyes: A versatile fluorogenic reaction for sensing G-quadruplex formation. Angewandte Chemie International Edition, 49, 2738-2742.

Nielsen, P. E. (2007). Peptide nucleic acids and the origin and homochirality of life. Origins of Life and Evolution of Biospheres, 37, 323-328.

Nielsen, P. E. (2010). Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chemistry & Biodiversity, 7, 786-804. https://doi.org/10.1002/cbdv.201000008

Pagano, B., Mattia, C. A., & Giancola, C. (2009). Applications of isothermal titration calorimetry in biophysical studies of G-quadruplexes. International Journal of Molecular Sciences, 10, 2935-2957.

Paul, A., Poulami, S., Yamuna, K., & Ladame, S. (2008). Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: A hybrid (3+1) PNA-DNA bimolecular quadruplex. Chemistry, 14, 8682-8689.

Vorlícková, M., Kejnovská, I., Sagi, J., Renciuk, D., Bednárová, K., Motlová, J., & Kypr, J. (2012). Circular dichroism and guanine quadruplexes. Methods, 57(1), 64-75. https://doi.org/10.1016/j.ymeth.2012.01.007

Yu, H., Guo, X., & Su, J. (2021). Peptide nucleic acid targeting of G-quadruplexes to regulate oncogenic translation. Biochemical Pharmacology, 188, 114570.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
183
View
0
Share