Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
REVIEWS   (Open Access)

Application of Nanotechnology in Plastic Waste Management and Recycling: Bangladesh Perspective

Md Shariful Islam1*, Md Zakaria2, Md Masum Rabbi Mim1, Jafor Raihan1, Alam Khan3 and G M Shafiur Rahman4

+ Author Affiliations

Biosensors and Nanotheranostics 3(1) 1-8 https://doi.org/10.25163/biosensors.319952

Submitted: 05 March 2024  Revised: 05 June 2024  Published: 09 June 2024 

Abstract

Plastic waste is a major environmental threat globally, with profound impacts on ecosystems. Rapid urbanization and economic growth in Bangladesh have significantly increased plastic consumption and pollution. Between 2005 and 2020, the average annual per capita plastic usage surged from 3 kg to 9 kg, with an even more pronounced rise in Dhaka, where it grew from 9.2 kg to 22.25 kg per capita over the same period. This escalating plastic consumption is projected to continue generating substantial plastic waste, which, without proper management, contributes to severe environmental degradation. Consequently, Bangladesh ranks among the nations with the highest plastic pollution levels, emphasizing the urgent need for effective recycling and waste management strategies. Nanotechnology offers a promising approach for addressing this issue. Transforming plastic waste into valuable nanomaterials not only mitigates environmental and human health risks but also provides resources for diverse applications. However, no studies to date have specifically examined the use of nanotechnology in Bangladesh for plastic waste management. This study aims to bridge this gap by demonstrating the conversion of PET waste into high-value carbon-based nanomaterials through nanotechnological processes. Our findings highlight the potential of waste plastics to produce various nanomaterials, including carbon dots, graphene and graphene films, carbon nanocomposites, MoC2 nanoparticles, photoluminescent carbon nanoparticles, carbon nanostructures, and carbon nanotubes (CNTs), thereby offering a sustainable solution for plastic waste reduction.

Keywords: Waste plastic, Recycle, Nanomaterials, Management, Carbon Nanotube, Graphene

References

Abdel Ghafar, H. H., Ali, G. A. M., Fouad, O. A., & Makhlouf, S. A. (2015). Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 53(11), 2980–2989.

Abdullah, M., & Abedin, M. Z. (2024). Assessment of plastic waste management in Bangladesh: A comprehensive perspective on sorting, production, separation, and recycling. Results in Surfaces and Interfaces, 15. https://doi.org/10.1016/j.rsurfi.2024.100221

Akter, S. (2024). Plastic waste management in Bangladesh: A legal analysis. https://doi.org/10.5281/zenodo.10607308.svg

Alhajri, N. S., Yoshida, H., Anjum, D. H., Garcia-Esparza, A. T., Kubota, J., Domen, K., & Takanabe, K. (2013). Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 1(40), 12606–12616.

Ali, G. A. M., Fouad, O. A., & Makhlouf, S. A. (2013). Structural, optical, and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites. Journal of Alloys and Compounds, 579, 606–611.

Ali, G. A. M., Fouad, O. A., Makhlouf, S. A., Yusoff, M. M., & Chong, K. F. (2014). Co3O4/SiO2 nanocomposites for supercapacitor application. Journal of Solid State Electrochemistry, 18(9), 2505–2512.

Ali, G. A. M., Fouad, O. A., Makhlouf, S. A., Yusoff, M. M., & Chong, K. F. (2016). Optical and electrochemical properties of Co3O4/SiO2 nanocomposite. Advanced Materials Research, 1133, 447–451.

Ali, G. A. M., Yusoff, M. M., Algarni, H., & Chong, K. F. (2018). One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceramics International.

Anthony, L. A. (2015). Plastics and environmental sustainability (1st ed.). New Jersey: John Wiley & Sons.

Asaad, J. N., Abd-El-Messieh, S. L., & Ikladious, N. E. (2014). Unsaturated polyester nanocomposites based on poly (ethylene terephthalate) waste using different types of nanofillers. Proceedings of the Institution of Mechanical Engineers Part N: Journal of Nanomaterials Nanoengineering and Nanosystems, 228(4), 174–183.

Bajad, G., Guguloth, V., Vijayakumar, R., Bose, S., Tiwari, S. K., & Vijayakumar, R. (2015). Synthesis and characterization of CNTs using polypropylene waste as precursor. Materials Science and Engineering B, 2015.

Bajad, G., Jain, R., Harhare, W., Rp, V., & Bose, S. (2017). Synthesis of fuel oil and carbon nanotubes in an autoclave using plastic waste as precursor. Materials and Manufacturing Processes, 32(5), 495–500.

Bambagioni, V., Bianchini, C., Marchionni, A., Filippi, J., Vizza, F., Teddy, J., Serp, P., & Zhiani, M. (2009). Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). Journal of Power Sources, 190(2), 241–251.

Bangladesh Investment Development Authority (BIDA). (2021). Plastics industry. Retrieved August 4, 2022, from https://bida.gov.bd/storage/app/uploads/public/616/6c2/e5d/6166c2e5d02d6789146170.pdf

Bazargan, A., & McKay, G. (2012). A review: Synthesis of carbon nanotubes from plastic wastes. Chemical Engineering Journal, 195, 377-391.

Berkman, M., Jagannatham, S., Priyanka, S., & Haridoss, P. (2014). Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Management, 34(11), 2139-2145.

Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., Lin, Y., Harruff, B. A., Veca, L. M., & Murray, D. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129(37), 11318–11319.

Chauhan, G. (2023). Innovations and future trends in plastic waste management. https://doi.org/10.2166/9781789063448_0433.

Choi, I. A., Li, Y., Kim, D. J., Pal, M., Cho, J. H., Lee, K., Jung, M. H., Lee, C., & Seo, W. S. (2013). Ultra-small, uniform, and single bcc-phased FexCo1-x/graphitic shell nanocrystals for T1 magnetic resonance imaging contrast agents. Chemistry: An Asian Journal, 8(1), 290–295.

Chung, Y. H., & Jou, S. (2005). Carbon nanotubes from catalytic pyrolysis of polypropylene. Materials Chemistry and Physics, 92(1), 256–259.

Das, S., & Mahalingam, H. (2019). Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. Journal of Environmental Chemical Engineering, 7(5), 103289.

Deng, J., You, Y., Sahajwalla, V., & Joshi, R. K. (2016). Transforming waste into carbon-based nanomaterials. Carbon, 96, 105–115. https://doi.org/10.1016/j.carbon.2015.09.033

Department of Environment (DoE). (2010). National 3R strategy for waste management. Retrieved August 24, 2022, from http://old.doe.gov.bd/publication_images/4_national_3r_strategy.pdf

Fahmida Khatun, Saadat, S. Y., & Mahbub, A. (2023). CPD's Green Cities Initiative: Briefing Note- Wrapped in Plastic: The State of Plastic Pollution in Bangladesh. Centre for Policy Dialogue (CPD). https://cpd.org.bd/

Fan, X., Jiao, G., Gao, L., Jin, P., & Li, X. (2013). The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid. Journal of Materials Chemistry B, 1(20), 2658–2664. https://doi.org/10.1039/C3TB00031A

Fang, C., Yu, R., Li, Y., Zhang, M., Hu, J., & Zhang, M. (2013). Preparation and characterization of an asphalt-modifying agent with waste packaging polyethylene and organic montmorillonite. Polymer Testing, 32(5), 953–960. https://doi.org/10.1016/j.polymertesting.2013.03.007

Fouad, O. A., Makhlouf, S. A., Ali, G. A. M., & El-Sayed, A. Y. (2011). Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Materials Chemistry and Physics, 128(1–2), 70–76. https://doi.org/10.1016/j.matchemphys.2011.03.021

Gong, J. (2012). Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. Applied Catalysis A: General, 449, 112–120. https://doi.org/10.1016/j.apcata.2012.07.018

Gong, J. (2014). Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite. Industrial & Engineering Chemistry Research, 53(11), 4173–4181. https://doi.org/10.1021/ie500220d

Gong, J., Liu, J., Jiang, Z., Feng, J., Chen, X., Wang, L., Mijowska, E., Wen, X., & Tang, T. (2014). Striking influence of chain structure of polyethylene on the formation of cup stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Applied Catalysis B: Environmental, 147, 592–601. https://doi.org/10.1016/j.apcatb.2013.10.033

Hu, Y., Yang, J., Tian, J., Jia, L., & Yu, J.-S. (2014). Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags. RSC Advances, 4(88), 47169–47176. https://doi.org/10.1039/C4RA08352G

Inspira Advisory & Consulting Limited. (2019). USAID/Bangladesh comprehensive private sector assessment. https://pdf.usaid.gov/pdf_docs/PA00TWMH.pdf

Islam, M. S., Kusumoto, Y., Abdulla-Al-Mamun, M., & Manaka, H. (2012). Synthesis, characterization and application of dumbbell-shaped magnetic (Fe3O4 and γ-Fe2O3) nanoparticles against HeLa (Cancer) cells. Current Nanoscience, 8, 811–818. https://doi.org/10.2174/157341312803871032

Jack, Z., Arifuzzaman, M., Tang, X., Chen, X. C., & Saito, T. (2023). Recent development of end-of-life strategies for plastic in industry and academia: Bridging their gap for future deployment. Materials Horizons. https://doi.org/10.1039/d2mh01549h

Kalita, S. G., Hirano, R., Shinde, S. M., Papon, R., Ohtani, H., & Tanemura, M. (2014). Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon, 72, 66–73.

Kamali, A. R., Yang, J., & Sun, Q. (2019). Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity. Applied Surface Science, 476, 539–551. https://doi.org/10.1016/j.apsusc.2018.12.072

Kibria, G. (2017). Plastic waste, plastic pollution- A threat to all nations! Pollution and climate change impacts. Retrieved August 4, 2022, from https://www.researchgate.net/publication/319391174_Plastic_Waste_Plastic_Pollution_A_Threat_to_All_Nations

Kocabas, C., Hur, S. H., Gaur, A., Meitl, M. A., Shim, M., & Rogers, J. A. (2005). Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small, 1(11), 1110–1116. https://doi.org/10.1002/smll.200500059

Kuriakose, T., Nair, P., & Bannhi, D. (2023). Modern nanotechnology, Chapter 15: Nanotechnology for plastic degradation (pp. 361-379). In J. A. Malik & M. J. Sadiq Mohamed (Eds.), Nanotechnology for the environment. https://doi.org/10.1007/978-3-031-31111-6_15

Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., & Qu, L. (2011). An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 23(6), 776–780. https://doi.org/10.1002/adma.201001903

Liu, J., Jiang, Z., Yu, H., & Tang, T. (2009). Production of hydrogen and carbon nanotubes by catalytic pyrolysis of waste polypropylene in a two-step process. The 5th ISFR, Chengdu, China.

Mahmudul, I. (2019). Bangladesh drowns in 8 lakh tonnes of plastic waste a year. The Business Standard. https://tbsnews.net/environment/bangladesh-drowns-8-lakh-tones-plastic-waste-year

Mai, E. F., Machado, M. A., Davies, T. E., Lopez-Sanchez, J. A., & da Silva, V. T. (2014). Molybdenum carbide nanoparticles within carbon nanotubes as superior catalysts for c-valerolactone production via levulinic acid hydrogenation. Green Chemistry, 16(9), 4092–4097. https://doi.org/10.1039/C4GC00477B

Makhlouf, A. S. H., & Ali, G. A. M. (Eds.). (2020). Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. https://doi.org/10.1007/978-3-030-68031-2_27

Manukyan, K. V. (2013). Combustion synthesis of graphene materials. Carbon, 62, 302–311. https://doi.org/10.1016/j.carbon.2013.06.051

Manukyan, K. V., Rouvimov, S., Wolf, E. E., & Mukasyan, A. S. (2013). Combustion synthesis of graphene materials. Carbon, 62, 302–311. https://doi.org/10.1016/j.carbon.2013.06.051

Mattson, M. P., Haddon, R. C., & Rao, A. M. (2000). Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. Journal of Molecular Neuroscience, 14(3), 175–182. https://doi.org/10.1385/JMN:14:3:175

Mehnaz, H., & Aditi, S. (2020). Export potential of recycled plastic: A study on Bangladesh. Asian Social Science, 16(3), 12. https://doi.org/10.5539/ass.v16n3p12

Mishra, N., Das, G., Ansaldo, A., Genovese, A., Malerba, M., Povia, M., Ricci, D., Di Fabrizio, E., Di Zitti, E., & Sharon, M. (2012). Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. Journal of Analytical and Applied Pyrolysis, 94, 91–98. https://doi.org/10.1016/j.jaap.2011.12.003

MoEFCC. (1995). The Bangladesh Environment Conservation Act, 1995. Ministry of Environment, Forest, and Climate Change. Retrieved August 24, 2022, from https://bangladeshbiosafety.org/wp-content/uploads/2017/05/Bangladesh_Environmental_Conservation_Act_1995.pdf

Monjur, M., Mahadi, H. M., Fazlur, R., & Mohammad, U. H. J. (2017). Towards the effective plastic waste management in Bangladesh: A review. Environmental Science and Pollution, 24, 27021–27046.

Mustofa, M. J. (2020). Legal framework dealing with waste management in Bangladesh: An analysis and evaluation. Southeast University Journal of Arts and Social Sciences, 3(1).

Nadiruzzaman, M., Hosna, S., & Afsana, E. (2022). Plastic waste governance in Bangladesh. ResearchGate. Retrieved from 10.13140/RG.2.2.22249.67680

Nath, D., & Sahajwalla, V. (2011a). Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. Journal of Hazardous Materials, 192(2), 691–697.

Nath, D., & Sahajwalla, V. (2011b). Growth mechanism of carbon nanotubes produced by pyrolysis of a composite film of poly(vinyl alcohol) and fly ash. Journal of Hazardous Materials, 104(2), 539–544.

Nath, D., & Sahajwalla, V. (2012). Analysis of carbon nanotubes produced by pyrolysis of composite film of poly(vinyl alcohol) and modified fly ash. Materials Sciences and Applications, 3, 103–109.

Nesreen, E.-R., Aichih, C., & Jim, S. (2023). Plastic management and sustainability: A data-driven study. Sustainability.

Pandey, P. C., Dhiman, M., Ankur, K. S., & Sarada, P. (2023). Plastic waste management for sustainable environment: Techniques and approaches. Waste Disposal & Sustainable Energy.

Philip, B., Julia, V., Seitz, M., & Peter, Q. (2023). Plastic waste utilization via chemical recycling: Approaches, limitations, and the challenges ahead. Chemie Ingenieur Technik.

Plastic recycling: Challenges, opportunities, and future aspects. (2023).

Qu, L., Cui, L., Wang, X., Chen, N., & Ji, B. (2017). Trash to treasure: Converting plastic waste into a useful graphene foil. Nanoscale, 9(26), 9089–9094.

Rahman, M. Z., Chamhuri, S., & Begum, R. A. (2017). Solid waste recycling: Sustainability issues in Dhaka city. Journal of Developing Areas.

Rahul, M., Aman, K., Ekta, R. S., & Sunil, K. (2023a). Recent research advancements in catalytic pyrolysis of plastic waste. ACS Sustainable Chemistry & Engineering.

Rahul, T., Azad, N. M., Dutta, D. Y., Bholu, R., & Sunil, K. (2023b). A critical review and future perspective of plastic waste recycling. Science of The Total Environment.

Ramírez, J. D. (2022). Implementation of refuse derived fuel technology towards achieving a sustainable circular economy.

Richard, C. T., Charles, J. M., Frederick, S. V. S., & Shanna, H. S. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2153–2166.

Ruan, G., Sun, Z., Peng, Z., & Tour, J. M. (2011). Growth of graphene from food, insects, and waste. ACS Nano, 5(9), 7601–7607.

Rusmirovic, A. J., Miloševic, M., Kalifa, M., Stojiljkovic, I., Rancic, M., & Marinkovic, A. (2016). Techno-economic analysis of unsaturated polyester production from waste PET. Zastita Materijala, 57, 605–612.

Sadegh, H., Ali, G. A. M., Makhlouf, A. S. H., Chong, K. F., Alharbi, N. S., Agarwal, S., & Gupta, V. K. (2018). MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. Journal of Molecular Liquids, 258, 345–353.

Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., Shimizu, M., Narita, N., Okamoto, M., & Kobayashi, S. (2014). Safe clinical use of carbon nanotubes as innovative biomaterials. Chemical Reviews, 114(11), 6040–6079.

Seo, W. S., Lee, J. H., Sun, X., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P. C., McConnell, M. V., & Nishimura, D. G. (2006). FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance imaging and near-infrared agents. Nature Materials, 5(12), 971–976.

Silvia, S. (2023). Fast and effective classification of plastic waste by pushbroom hyperspectral sensor coupled with hierarchical modelling and variable selection. Resources, Conservation & Recycling.

Takami, T., Seino, R., Yamazaki, K., & Ogino, T. (2014). Graphene film formation on insulating substrates using polymer films as carbon source. Journal of Physics D: Applied Physics, 47(9), 094015.

Tang, T., Chen, X., Meng, X., Chen, H., & Ding, Y. (2005). Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angewandte Chemie International Edition, 44(10), 1517–1520.

The Business Standards. (2023). Retrieved from https://www.tbsnews.net/economy/industry/plastic-industry-policy-finalised-10-yr-income-tax-holiday-entrepreneurs-666658

The World Bank. (2021). Towards a multisectoral action plan for sustainable plastic management in Bangladesh. Retrieved July 30, 2022, from https://thedocs.worldbank.org/en/doc/42712a1018d536bb86c35018b9600c53-0310062021/original/National-Action-Plan-for-plastic-management-Dec.pdf

UN Department of Economic and Social Affairs. (2024). Population Division (Medium-fertility variant).

Wang, L., Zhang, F., Dai, W., Cheng, Q., Lu, L., Zhang, K., Lin, M., Shen, M., & Wang, D. (2019). One step transformation of waste polyvinyl chloride to tantalum carbide@ carbon nanocomposite at low temperature. Journal of the American Ceramic Society, 102(11), 6455–6462.

Wei, X. W., Zhu, G. X., Xia, C. J., & Ye, Y. (2006). A solution phase fabrication of magnetic nanoparticles encapsulated in carbon. Nanotechnology, 17(17), 4307.

World Economic Forum. (2016). The new plastics economy: Rethinking the future of plastics. Retrieved August 25, 2022, from https://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics/?DAG=3&gclid=CjwKCAjwmJeYBhAwEiwAXlg0AeVyvKHql3UIgJgMpghuMKIcjkcsV4j1cq8kCXW1icdOrfB59iaoBoCy8YQAvD

Writ Petition, 14941 (Supreme Court of Bangladesh High Court Division January 6, 2020). Retrieved August 23, 2022, from https://elaw.org/system/files/attachments/publicresource/BD_OrderPlastic20Jan20.pdf

Yang, W., Thordarson, P., Gooding, J. J., Ringer, S. P., & Braet, F. (2007). Carbon nanotubes for biological and biomedical applications. Nanotechnology, 18(41), 412001.

Yang, Y., Guo, Z., Zhang, H., Huang, D., Gu, J., Huang, Z., Kang, F., Alan Hatton, T., & Rutledge, G. C. (2013). Electrospun magnetic carbon composite fibers: Synthesis and electromagnetic wave absorption characteristics. Journal of Applied Polymer Science, 127(6), 4288–4295.

Zakir Hossain, H. M., Hossain, Q. H., Monir, M. M. U., & Ahmed, M. T. (2014). Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited. Renewable and Sustainable Energy Reviews, 39, 35–41. https://doi.org/10.1016/j.rser.2014.07.007

Zhang, J., Li, J., Cao, H., & Qian, Y. (2008). Synthesis and characterization of larger diameter carbon nanotubes from catalytic pyrolysis of polypropylene. Materials Letters, 62(12), 1839–1842.

Zhang, J., Zhang, L., Yang, H., Kong, Q., Liu, Y., & Yuan, A. (2014). Sustainable processing of waste polypropylene to produce high yield valuable Fe/carbon nanotube nanocomposites. CrystEngComm, 16(37), 8832–8840.

Zhang, Q., Huang, J. Q., Zhao, M. Q., Qian, W. Z., & Wei, F. (2011). Carbon nanotube mass production: Principles and processes. ChemSusChem, 4(7), 864–889.

Zhuo, C., Hall, B., Richter, H., & Levendis, Y. (2010). Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon, 48(14), 4024–4034.

 

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
46
View
0
Share