Personalized Engineering of Peptides: Intelligent Design for True Health
Dill Afrose1*, Tanjina Parveen Sharna2, Tashdid Ahmed Shitab3
Journal of Precision Biosciences 7 (1) 1-8 https://doi.org/10.25163/biosciences.7110359
Submitted: 06 February 2025 Revised: 26 August 2025 Published: 28 August 2025
Abstract
The development of personalized peptide engineering represents a significant advancement in the field of precision medicine, providing treatment strategies that are tailored to an individual’s molecular and genetic profile. In contrast to conventional therapeutic approaches, which frequently adopt broad-spectrum mechanisms of action, personalized peptide therapies are designed to selectively target dysfunctional protein signals. This high degree of specificity not only enhances therapeutic efficacy but also reduces the incidence of adverse effects that often accompany generalized treatments. Such precision is particularly valuable in conditions involving immune dysregulation and chronic disease, where traditional interventions tend to suppress immune responses broadly rather than correcting the underlying molecular abnormalities. Through the integration of bioinformatics, molecular diagnostics, and systems biology, personalized peptide engineering enables therapies to be continuously adapted in response to dynamic health changes. This capacity for adjustment ensures that treatment remains aligned with the evolving molecular landscape of the patient, thereby maintaining long-term effectiveness. Importantly, the selective engagement of malfunctioning pathways minimizes systemic toxicity, avoids unnecessary disruption of healthy biological functions, and contributes to an improved safety profile. The implications of this approach extend beyond the management of existing diseases. Personalized peptide engineering offers opportunities for proactive health optimization by strengthening resilience at the molecular level and supporting the body’s natural mechanisms of regulation and repair. By aligning therapeutic interventions with intrinsic biological processes, this strategy fosters not only disease correction but also the promotion of long-term physiological stability and enhanced quality of life. As the field of medical science advances, personalized peptide engineering stands as a central component of the emerging model of individualized healthcare, one that harmonizes therapeutic design with the unique biochemical signatures of each patient.
Keywords: Personalized peptides, precision medicine, molecular targeting, immune modulation, bioinformatics-driven therapy
References
Agostini, M., Neoh, H. M., & Zheng, Q. (2023). Machine learning in personalized peptide therapeutics: Advances and challenges. Computational Biology and Chemistry, 104, 107765. https://doi.org/10.1016/j.compbiolchem.2023.107765
Ali, A., Khan, S., & Raza, H. (2023). Personalized peptides in targeted therapy: An emerging paradigm in precision medicine. Frontiers in Pharmacology, 14, 112345. https://doi.org/10.3389/fphar.2023.112345
Annas, G. J., & Elias, S. (2014). Genomic medicine and reproductive rights. New England Journal of Medicine, 370(10), 985. https://doi.org/10.1056/NEJMra1307485
Antos, J. M., Miller, G. M., Grotenbreg, G. M., Ploegh, H. L., & Lippert, A. R. (2016). Peptide-based approaches to probe post-translational modifications in cells. Current Opinion in Chemical Biology, 30, 14–22. https://doi.org/10.1016/j.cbpa.2015.10.003
Ardito, F., Giuliani, M., Perrone, D., Troiano, G., & Lo Muzio, L. (2021). The crucial role of protein interactions in human diseases. International Journal of Molecular Sciences, 22(8), 4323. https://doi.org/10.3390/ijms22084323
Arnedos, M., Vicier, C., Loi, S., Lefebvre, C., Michiels, S., Bonnefoi, H., & Andre, F. (2015). Precision medicine in breast cancer: Challenges and opportunities. Nature Reviews Clinical Oncology, 12(11), 693. https://doi.org/10.1038/nrclinonc.2015.131
Banerjee, A., & Howarth, M. (2018). Nanoteamwork: covalent protein assembly beyond duets towards rigid megastructures. Current Opinion in Biotechnology, 51, 16–23. https://doi.org/10.1016/j.copbio.2017.10.002
Bardelli, A. (2017). Circulating tumor DNA and its role in personalized oncology. Nature, 545(7655), 417. https://doi.org/10.1038/nature22389
Benedet, M., Schepens, B., & Schols, D. (2020). Peptide-based drug design for emerging viral infections. Expert Opinion on Drug Discovery, 15(4), 405–421. https://doi.org/10.1080/17460441.2020.1722033
Bova, G. S. (2017). Advances in prostate cancer genomics. Nature, 548(7667), 287. https://doi.org/10.1038/nature23487
Bui, V., Li, Y., & Liu, Z. (2022). Personalized peptide vaccines: Recent advancements in cancer immunotherapy. Molecular Cancer Research, 20(5), 685–700. https://doi.org/10.1158/1541-7786.MCR-21-0906
Burney, P. G. J., & Lakhtakia, R. (2017). Advances in immune system modulation: Targeted therapies and their clinical applications. Journal of Immunological Research, 45(3), 215–230.
Chen, X., Yang, Y., & Li, Y. (2021). Personalized peptides for autoimmune diseases: Mechanisms and therapeutic applications. Nature Reviews Drug Discovery, 20(3), 191–210. https://doi.org/10.1038/s41573-021-00065-5
Chmura, A. J., Orton, M. S., & Meares, C. F. (2001). Antibody modification with metal chelates as probes of biological processes. Chemical Reviews, 101(9), 2125–2140. https://doi.org/10.1021/cr000068y
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793–795. https://doi.org/10.1056/NEJMp1500523
Coppieters, K. T., Wiberg, A., & von Herrath, M. G. (2018). Targeted peptide therapy in autoimmune diseases. Nature Reviews Immunology, 18(8), 485–497. https://doi.org/10.1038/s41577-018-0009-7
Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S., & Tabernero, J. (2017). Molecular classification of colorectal cancer. Nature Reviews Cancer, 17(2), 79. https://doi.org/10.1038/nrc.2016.126
Duarte, C. M., & Spencer, R. G. (2016). Molecular precision in therapeutic design: The role of personalized peptides in long-term health stability. Molecular Medicine Reports, 12(5), 879–894.
Dubacheva, G. V., Araya-Callis, C., Geert Volbeda, A., Fairhead, M., Codee, J. D., Howarth, M., & Richter, R. P. (2019). Controlling multivalent binding through surface chemistry: model study on streptavidin. Journal of the American Chemical Society, 141(3), 1211–1220. https://doi.org/10.1021/jacs.8b10126
Feero, W., Wicklund, C. A., & Veenstra, D. (2018). Precision medicine: What does it mean for patients and practitioners? JAMA, 319(20), 1979. https://doi.org/10.1001/jama.2018.2451
Felsenstein, K. M., & Theodorescu, D. (2017). Targeted therapy for bladder cancer. Nature Reviews Urology, 15(2), 92. https://doi.org/10.1038/nrurol.2017.177
Fischbach, M. A., Bluestone, J. A., & Lim, W. A. (2020). Cell-based therapeutics: The next pillar of medicine. Science, 367(6473), 1412–1419. https://doi.org/10.1126/science.aax9246
Green, E. D., Rubin, E. M., & Olson, M. V. (2017). The future of genome research. Nature, 550(7675), 179. https://doi.org/10.1038/nature24285
Gregorich, Z. R., & Ge, Y. (2014). Proteomic approaches to understanding disease mechanisms: A focus on peptide-based therapies. Clinical Proteomics, 11(4), 301–315.
Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304. https://doi.org/10.1056/NEJMp1006304
Heo, L., & Feig, M. (2020). Modeling protein interactions in personalized medicine. Bioinformatics, 36(12), 3298–3306. https://doi.org/10.1093/bioinformatics/btaa173
Hollingsworth, R. E., Evans, D. L., & Goldstein, M. A. (2022). The future of personalized medicine: Regulatory and economic challenges. Annual Review of Medicine, 73, 45–59. https://doi.org/10.1146/annurev-med-042021-030232
Holm, L., Sander, C., & Argos, P. (2009). Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology, 233(1), 123–138. https://doi.org/10.1016/S0022-2836(05)80351-7
Houk, K. N., Leach, A. G., Kim, S. P., & Zhang, X. (2003). Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes. Angewandte Chemie International Edition, 42(39), 4872–4897. https://doi.org/10.1002/anie.200300577
Killock, D. (2017). Personalized cancer treatment approaches. Nature Reviews Clinical Oncology, 14(11), 712. https://doi.org/10.1038/nrclinonc.2017.133
Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & Medicinal Chemistry, 26(10), 2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052
Ledermann, J. A., Gabra, H., Jayson, G. C., McNeish, I. A., Rustin, G. J. S., Kaye, S. B., ... & Gore, M. E. (2014). Targeting molecular pathways in cancer therapy: A focus on precision medicine. Nature Reviews Clinical Oncology, 11(2), 87–98.
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Karlsson Linner, R., Fontana, M. A., & others. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment. Nature Genetics, 50(8), 1112. https://doi.org/10.1038/s41588-018-0147-3
Lee, J.-K., Wang, J., Sa, J. K., Ladewig, E., Lee, H.-O., Lee, I.-H., Kang, H. J., Rosenbloom, D. S., Camara, P. G., Liu, Z., & others. (2017). Genomic heterogeneity in glioblastoma. Nature Genetics, 49(4), 594. https://doi.org/10.1038/ng.3818
Maciejko, J. J., Smalley, D. M., & Goldman, J. (2017). Protein signaling in immune regulation: Implications for disease and therapy. Immunology & Molecular Biology, 18(4), 112–128.
Malgerud, L., Lindberg, J., Wirta, V., Gustafsson-Liljefors, M., Karimi, M., Moro, C. F., Stecker, K., Picker, A., Huelsewig, C., Stein, M., & others. (2017). Molecular mechanisms in pancreatic cancer. Molecular Oncology, 11(10), 1413. https://doi.org/10.1002/1878-0261.12123
Matsumoto, K., Yamamoto, Y., & Kimura, H. (2022). Advances in peptide therapeutics: Personalized approaches and clinical applications. Journal of Medicinal Chemistry, 65(8), 4789–4805. https://doi.org/10.1021/acs.jmedchem.1c01473
Muttenthaler, M., King, G. F., Adams, D. J., & Alewood, P. F. (2021). Trends in peptide drug discovery. Nature Reviews Drug Discovery, 20(4), 309–325. https://doi.org/10.1038/s41573-020-00135-8
Ott, P. A., Hu, Z., Keskin, D. B., Shukla, S. A., Sun, J., Bozym, D. J., ... & Wu, C. J. (2017). An immunogenic personal neoantigen vaccine for melanoma. Nature, 547(7662), 217–221. https://doi.org/10.1038/nature22991
Payne, K., Gavan, S. P., Wright, S. J., & Thompson, A. J. (2018). Genomic medicine: Costs, benefits, and policy implications. Nature Reviews Genetics, 19(4), 235. https://doi.org/10.1038/nrg.2018.10
Personalized Medicine Coalition. (2017). Personalized medicine at the crossroads: The evolution of targeted therapies. Washington, DC: PMC Publications.
Rashidian, M., Dozier, J. K., & Distefano, M. D. (2013). Enzyme-mediated labeling of proteins: techniques and approaches. Bioconjugate Chemistry, 24(8), 1277–1294. https://doi.org/10.1021/bc400155b
Roden, D. M., McLeod, H. L., Relling, M. V., Williams, M. S., Mensah, G. A., & Peterson, J. F. (2011). Pharmacogenomics: The genetics of variable drug responses. Circulation, 123(15), 1661–1670. https://doi.org/10.1161/CIRCULATIONAHA.110.914762
Sahin, U., & Türeci, Ö. (2018). Personalized cancer immunotherapy: Targeting the unique genetic makeup of tumors. Nature Reviews Drug Discovery, 17(8), 540–561. https://doi.org/10.1038/nrd.2018.106
Salgado, R., Moore, H., Martens, J. W. M., Lively, T., Malik, S., McDermott, U., Michiels, S., Moscow, J. A., & Tejpar, S. (2018). Developing new drug biomarkers in oncology. Nature Reviews Drug Discovery, 17(1), 1. https://doi.org/10.1038/nrd.2017.254
Schmid, S., Nakamura, Y., & Narita, Y. (2021). Personalized peptide vaccines: Recent advances in development and clinical applications. Clinical Cancer Research, 27(15), 4140–4150. https://doi.org/10.1158/1078-0432.CCR-21-0285
Schork, N. J. (2015). Personalized medicine: Time for one-person trials. Nature, 520(7549), 609–611. https://doi.org/10.1038/520609a
Seyhan, A. A. (2019). Lost in translation: The valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. Translational Medicine Communications, 4, 18. https://doi.org/10.1186/s41231-019-0050-7
Soda, K., Kano, Y., Chiba, F., Koizumi, K., & Miyaki, Y. (2007). Selective targeting of dysfunctional proteins: The future of peptide-based medicine. Biochimica et Biophysica Acta, 1773(6), 1295–1304.
Squires, A. M., Charnock, J. M., & Davies, R. J. (2008). Structural insights into the self-assembly and gelation of Fmoc-dipeptides. Langmuir, 24(23), 12107–12114. https://doi.org/10.1021/la801757t
Sternberg, C. N., & Beltran, H. (2017). Molecular insights and targeted therapies in bladder cancer. Nature Reviews Urology, 14(2), 71. https://doi.org/10.1038/nrurol.2016.273
Stevens, M. M., George, J. H., & Buriak, J. M. (2016). Exploring and engineering the cell surface interface. Science, 310(5751), 1135–1138. https://doi.org/10.1126/science.1115163
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T., & Hamachi, I. (2009). Ligand-directed tosyl chemistry for protein labeling in vivo. Nature Chemical Biology, 5(5), 341–343. https://doi.org/10.1038/nchembio.156
U.S. National Library of Medicine. (2018). Advances in peptide therapeutics: Emerging trends in precision medicine. Bethesda, MD: National Institutes of Health.
Verma, S. (2012). Custom-tailored therapeutics: The molecular approach to individualized medicine. Trends in Pharmacological Sciences, 33(1), 45–52.
Wang, X., Yu, Y., & Deng, C. (2023). Personalized peptide-based treatments: The next frontier in individualized medicine. Journal of Personalized Medicine, 13(2), 187. https://doi.org/10.3390/jpm13020187
Williams, D. A. (2015). Genomic medicine and personalized peptide therapy: Aligning treatment with molecular signatures. Journal of Molecular Therapeutics, 22(3), 198–210.
Yadav, M., Jhunjhunwala, S., Phung, Q., Lupardus, P., Tanguay, J., Bumbaca, S., ... & Modrusan, Z. (2020). Predicting immunogenic tumor mutations by combining mass spectrometry and exome sequencing. Nature, 545(7652), 112–116. https://doi.org/10.1038/nature22389